Abstract:
A variable capacity hydraulic machine has a rotating group located within a casing and a control housing secured to the casing to extend across and seal an opening in the casing. The control housing accommodates a control circuit and a pair of sensors to sense change in parameters associated with the rotating group. One of the sensors is positioned adjacent the barrel on the rotating group to sense rotational speed and the other senses displacement of the swashplate. The control housing accommodates a control valve and accumulator to supply fluid to the control valve.
Abstract:
A hydraulic motor 10 of the invention includes a detected unit 52 formed on an outer circumferential surface of a cylinder block 14 and a rotation sensor 50arranged opposed to the detected unit 52 for detecting the detected unit 52. The rotation sensor 50 is provided on a position corresponding to a position between a deepest portion 41 of a cylinder hole 29 and a rear end face 28 of the cylinder block in an axial direction of the cylinder block. A fan driving device 60 is provided with the hydraulic motor 10, a bracket 61 to which the hydraulic motor is attached in a state in which a tip end of the rotational shaft 13 is arranged on a surface side thereof through a through-hole 64 and a fan 62 attached to the rotational shaft 13 and is driven by the hydraulic motor.
Abstract:
A rotary hydraulic machine has a swashplate adjustable by an actuator. The swashplate has a part cylindrical bearing surface supported by a complimentary bearing surface in the housing and a fluid bearing acts between the surfaces. The fluid is supplied to the fluid bearing by pressure compensated flow control valves to maintain a predetermined flow of fluid. The actuator includes a pair of single acting hydraulic motors secured in the housing and acting on the swashplate at spaced locations. The pistons of the hydraulic motors engage cylindrical pins located on the swashplate to permit a rolling motion between the swashplate and motors as the swashplate is adjusted.
Abstract:
An electric-motor hydraulic pump includes a housing having a stationary internal shaft. A pair of cylinder blocks are rotatably carried by the shaft within the housing, and an array of pistons are slidably disposed with each cylinder block. A yoke plate is mounted within the housing and engages the pistons for determining displacement of the pistons within the cylinder blocks. Fluid inlet and outlet ports are provided in the housing and are coupled to the cylinder blocks. An induction motor includes a rotor carried by the cylinder block for corotation therewith, and a stator mounted within the housing surrounding the rotor. An electronic controller for controlling outlet fluid pressure and flow from the pump includes a plurality of sensors mounted on the housing for sensing operating characteristics of the pump and motor to provide electronic sensor signals as functions thereof. Control electronics are responsive to the sensor signals for controlling fluid pressure and flow from the pump by varying effective displacement of the pump, and by varying the electrical power (current and frequency) applied to the motor.
Abstract:
Disclosed is a device for controlling or measuring operational parameters of an axial piston machine. The tilting plate which engages and adjusts the stroke of the piston is provided with two opposite pivot pins supported in fixed bearings. At least one pivot pin is provided with a shearing stress sensor preferably in the form of a magnetoelastic feeler which produces electrical signals the pulsation of which is indicative of rotational speed and the magnitude of the signal is proportional to pressure applied by the pistons and thus to the delivery of the machine. A second sensor is coupled to the tilting plate to indicate the angular displacement of the latter. The output signals from the sensors are separated into the pressure dependent signals, frequency dependent signals and angular displacement signals which upon multiplication are applied to a programmable data processing unit. The output of the unit is supplied to a solenoid operated proportional valve which controls pressure fluid for hydraulic setting motors which adjust the angular displacement of the tilting plate.
Abstract:
A hydraulic pump/motor includes a rotational shaft rotatably attached inside a casing, a cylinder block configured to rotate together with the rotational shaft, a plurality of pistons, a swash plate, a valve plate, and a rotation detection mechanism. The rotation detection mechanism includes a detection target section having three or more recesses formed on an outer peripheral surface of the cylinder block in a unique arrangement pattern with different arc lengths between the three continuous recesses with respect to one rotational direction of the rotational shaft and being formed so as not to include the unique arrangement pattern with respect to the other rotational direction of the rotational shaft, each of the three or more recesses having a cross section having a same semicircular shape perpendicular to a direction of the rotational shaft; and a rotation sensor arranged in the casing in a state of facing the detection target section.
Abstract:
A fluid device includes a variable swashplate adapted for movement between a first position and a second position. A control piston is adapted to selectively move the variable swashplate between the first and second positions. A control valve is in fluid communication with the control piston. The control valve includes a sleeve defining a spool bore, at least one fluid inlet passage in fluid communication with a fluid source and at least one control passage in fluid communication with the control piston. The control fluid passage includes an opening at the spool bore. A spool is disposed in the spool bore of the sleeve. The spool includes a metering surface that selectively communicates fluid between the fluid inlet passage and the control fluid passage. The metering surface has a first end and a second end. The metering surface having a tapered surface disposed between the first and second ends.
Abstract:
An electricity-oil hybrid motor 1 includes an oil-pressure motor 10 and an electric motor 30. The electricity-oil hybrid motor 1 includes a rotating shaft 11 and causes the rotating shaft 11 to rotate by supplied operating oil. The electric motor 30 includes a rotor 32 connected to the rotating shaft 11, a stator 33 provided around the rotor 32, and a housing 34 in which the rotor 32 and the stator 33 are accommodated. The rotor 32 and the housing 34 are provided so as to surround and cover a casing 17 of the oil-pressure motor 10. The housing 34 includes a rotating shaft accommodating space 51 in which the rotating shaft 11 is accommodated and a stator accommodating space 52 in which the stator is accommodated. A sealing member 39 configured to separate the accommodating spaces 51 and 52 is provided in the housing 34.
Abstract:
A variable capacity hydraulic machine has a rotating group located within a casing and a control housing secured to the casing to extend across and seal an opening in the casing. The control housing accommodates a control circuit and a pair of sensors to sense change in parameters associated with the rotating group. One of the sensors is positioned adjacent the barrel on the rotating group to sense rotational speed and the other senses displacement of the swashplate. The control housing accommodates a control valve and accumulator to supply fluid to the control valve.
Abstract:
An electronic control system for a variable displacement pump comprises apparatus for sensing the actual position of the displacement determinative element and the actual rotational speed of the pump cylinder block, and for producing representative signals which are combined to produce a signal indicative of actual output flow rate. The displacement determinative elements position and the cylinder rotational speed are sensed directly by sensors mounted within the housing of the pump. The speed sensor is disposed in close proximity to, and aligned with marks inscribed on, the outer surface of the rotatable cylinder block. The volumetric efficiency of the pump is also sensed by and used to determine the actual flow rate.