Abstract:
Methods for repairing and manufacturing a gas turbine airfoil, and the airfoil repaired and manufactured with such methods are presented with, for example, the repair method comprising providing an airfoil having specified nominal dimensions, the airfoil comprising a first material, the first material having a creep life and a fatigue life, the airfoil further comprising a leading edge section and a trailing edge section; removing at least one portion of at least one section of the airfoil to create at least one deficit of material for the airfoil relative to the specified nominal dimensions, the at least one section selected from the group consisting of the leading edge section and the trailing edge section; providing at least one insert comprising a second material, the second material having a creep life that is at least substantially equal to the creep life of the first material, and a fatigue life that is at least substantially equal to the fatigue life of the first material; and disposing the at least one insert onto the airfoil such that the at least one deficit of material is substantially eliminated.
Abstract:
A turbine engine includes a turbine driven by hot gas, a compressor rotating with the turbine to generate compressed air, an annular combustor coaxial with the turbine to combust fuel and compressed air to generate the hot gas, and an annular recuperator to recover heat from the turbine exhaust gas and heat the compressed air for combustion. The annular recuperator surrounds the turbine and includes two contiguous parts made from two materials having different thermal properties and joined to one another to form a single annular structure. One recuperator part is formed from a high-temperature material having a high thermal limit for exposure to high-temperature turbine exhaust gas, and the other recuperator part is formed from a material having a lower thermal limit than the high-temperature material for exposure to reduced-temperature turbine exhaust gas.
Abstract:
A compliant shim for use between the root of a gas turbine fan blade and a dovetail groove in a gas turbine rotor disk to reduce fretting therebetween. The compliant shim has first and second slots for engaging tabs extending from the fan blade root. The slots and tabs cooperate to hold the shim during engine operation. An oxidation layer covers the compliant shim.
Abstract:
A compliant shim for use between the root of a gas turbine fan blade and a dovetail groove in a gas turbine rotor disk to reduce fretting therebetween. The compliant shim has first and second slots for engaging tabs extending from the fan blade root. The slots and tabs cooperate to hold the shim during engine operation. An oxidation layer covers the compliant shim. The shim is augmented with an upstanding wall and a seal element to seal the gap that exists between platform edges of adjacent fan blades. This simple combination solves two complex problems, fatigue of fan assembly parts and loss of operating efficiency caused by fluid flow leakage.
Abstract:
A method for repairing run-in coatings is provided. The method includes the steps of filling a damaged site of the run-in coating with a filling material having a material composition that corresponds to a material composition of the run-in coating or is comparable to the material composition of the run-in coating or having material properties that are comparable to material properties of the run-in coating; drying the filling material that has been filled into the damaged site; depositing a donor diffusion layer over an area of the damaged site and onto the dried filling material; and thermally treating the run-in coating at least in the area of the damaged site to locally diffuse at least one metallic element from the donor diffusion layer into the filling material.
Abstract:
A gas turbine component and a method for producing an anti-erosion coating system are disclosed. The gas turbine component includes a basic material, on which an anti-erosion coating system is provided that is a multilayer system including at least one ductile metal layer and at least one hard, ceramics-containing layer for forming a partial anti-erosion system. At least one anti-corrosion layer that has a lower electrochemical potential than the basic material is provided between the partial anti-erosion system and the basic material, thus providing cathodic corrosion protection.
Abstract:
A brush seal having bristles of a diameter of between 0.005 mm to 0.02 mm manufactured from an oxidation resistant metal alloy including between 10 and 60% cobalt as a base alloy having no more than 1% creep after a 1000 hours at 650° C. at a pressure of at least 345 Pa.
Abstract:
A multilayer coating system is provided. The multilayer coating system includes a substrate, a first metallic layer on the substrate, a first ceramic layer on the first metallic layer, a second metallic layer on the first ceramic layer, and an outermost ceramic layer on the second metallic layer. The multilayer coating system achieves a relatively high overall layer thickness since the critical layer thicknesses of the individual layers do not exceed the multilayer coating.
Abstract:
The present invention relates to a method of repairing intake coatings (12), in particular intake coatings for use in compressor and turbine components, wherein the process comprises the following steps: a) filling of a damaged place (10) of the inlet coating (12) with a material (18) whose material composition corresponds to that of the intake coating (12) or is comparable to this or whose materials properties are comparable to the materials properties of the intake coating (12); b) drying of the material (18) introduced into the damaged place (10); c) application of a diffusion donor layer (20) over the region of the damaged place (10) and onto the introduced material (18); and d) heat treatment of the intake coating (12) at least in the region of the damaged place (10) to effect local diffusion of at least one metallic element from the diffusion donor layer (20) into the introduced material (18).
Abstract:
A compressor using a refrigerant containing a compound having a double bond characterized in that any one selected from a Fe—P-based electroplated film, a Fe—W-based electroplated film, a Fe—C-based electroplated film, a Fe—N-based electroplated film, a Co-based electroplated film, a Co—W-based electroplated film, a Cr-based electroplated film, a Cr—Mo-based electroplated film, a resin-coated film and a DLC-surface-treated film is employed as a coating layer for an internal structural member. The occurrence of an additional reaction of the refrigerant containing a compound having a double bond can be suppressed, and an excellent performance of the compressor can be exhibited for a long term.