Abstract:
A method facilitates assembling a gas turbine engine assembly. The method comprises providing at least one propelling gas turbine engine that includes a core engine including at least one turbine, coupling an auxiliary engine to the propelling gas turbine engine such that during operation of the propelling gas turbine engine, such that at least a portion of the airflow entering the propelling gas turbine engine is extracted from the propelling gas and channeled to the auxiliary engine for generating power, and coupling a modulating valve in flow communication to the propelling gas turbine engine to control the flow of airflow from the propelling gas turbine engine to the auxiliary engine, wherein the modulating valve is selectively operable to control an extraction point of airflow from the propelling gas turbine engine.
Abstract:
A single-shaft combined plant having an emergency shut-off oil system is provided. The emergency shut-off oil system is constituted such that when a steam governing valve tripping electromagnetic valve is opened, only a steam turbine is stopped; a master tripping electromagnetic valve is connected to a fuel gas control valve emergency shut-off oil line, a fuel oil control valve emergency shut-off oil line, and a steam governing valve emergency shut-off oil line via check valves; and when the master tripping electromagnetic valve is opened, both the steam turbine and a gas turbine are stopped. Thus, only the steam turbine can be stopped. Even if a tripping valve provided on the fuel gas control valve emergency shut-off oil line or the fuel oil control valve emergency shut-off oil line does not open because of a breakdown, the gas turbine can be stopped reliably.
Abstract:
A system and method to maximize fuel efficiency for a plurality of simultaneously operating engines is disclosed. The system includes means to determine the fuel consumption of the engine, measure the thrust of each engine and means to substantially equalize the ratio of the fuel consumption to the thrust between each of the engines. A pressure transducer is included to provide thrust data supply to each of the engines to a microprocessor, and a microprocessor is run to substantially equalize the ratio of the fuel consumption to the thrust to provide an increased fuel efficient system.
Abstract:
There are described methods and systems for operating an aircraft having two or more engines. One method comprises operating the two or more engines of the aircraft in an asymmetric operating regime, wherein a first of the engines is in an active mode to provide motive power to the aircraft and a second of the engines is in a standby mode to provide substantially no motive power to the aircraft; governing the first engine in the active mode using a first governing logic; and governing the second engine in the standby mode using a second governing logic, the second governing logic based on a target compressor speed and variable geometry mechanism (VGM) settings that are adjusted using trim values dependent on at least one parameter of the second engine in the standby mode.
Abstract:
A multi-engine aircraft includes a first engine drivingly engaged to a common rotatable load and a second engine drivingly engaged to the common rotatable load, the second engine having a bleed air system and a control system in communication with a compressed air switching system. The control system controls operation of the second engine and/or the compressed air switching system. The compressed air switching system includes a switching valve that is displaceable between at least a first position and a second position, the first position interconnecting a lower pressure inlet and a switch outlet, and the second position interconnecting a high pressure inlet and the switch outlet. The switch outlet is in communication with the bleed air system of the second engine. The control system actuates the switching valve to switch between the first and second positions.
Abstract:
A power management system for a multi engine rotorcraft having a main rotor system with a main rotor speed. The power management system includes a first engine that provides a first power input to the main rotor system. A second engine selectively provides a second power input to the main rotor system. The second engine has at least a zero power input state and a positive power input state. A power anticipation system is configured to provide the first engine with a power adjustment signal in anticipation of a power input state change of the second engine during flight. The power adjustment signal causes the first engine to adjust the first power input to maintain the main rotor speed within a predetermined rotor speed threshold range during the power input state change of the second engine.
Abstract:
An electrical power system architecture and method for allocating power includes a power distribution bus configured to receive power generated by a first engine having a first generator and a second generator, a first set of electrical buses connected with the power distribution bus and associated with the first engine, and a second set of electrical buses configured to selectively connect with the power distribution bus.
Abstract:
A gas turbine engine is disclosed which includes a bypass passage that in some embodiments are capable of being configured to act as a resonance space. The resonance space can be used to attenuate/accentuate/etc a noise produced elsewhere. The bypass passage can be configured in a number of ways to form the resonance space. For example, the space can have any variety of geometries, configurations, etc. In one non-limiting form the resonance space can attenuate a noise forward of the bypass duct. In another non-limiting form the resonance space can attenuate a noise aft of the bypass duct. Any number of variations is possible.
Abstract:
A method and control system for an aircraft engine comprising a gas turbine driving a fan propeller with a mechanical gear-train and a dedicated pitch change mechanism for the fan propeller includes a fuel flow signal input; a pitch change mechanism signal input; a controlled plant for relating a pitch change mechanism pitch angle (BetaP) and a fuel flow (Wf) to at least two controlled outputs and a set of constraints. A decoupling control decoupling the controlled plant and/or the constraints into two separate single-input single-output (SISO) control loops for the first and second controlled outputs and a decoupling control decoupling the constraints from the decoupled controlled outputs and the constraints from one another provide gas turbine and fan propeller coordinate control while coordinately controlling constraints and outputs. A feedforward control can compensate the load change effect on engine speed and fan propeller rotor speed control.
Abstract:
A system includes a hybrid power plant controller programmed to receive a plurality of signals representative of one or more operating parameters of a hybrid power plant. The hybrid power plant includes at least one gas turbine engine, at least one gas engine, and at least one catalyst system. The hybrid power plant controller is programmed to utilize closed-loop optimal control to generate one or more operational setpoints based on the one or more operating parameters for the hybrid power plant to optimize performance of the hybrid power plant. The hybrid power plant controller uses closed-loop optimal control to provide the one or more operational setpoints to respective controllers of the at least one gas turbine engine, the at least one gas engine, and the at least one catalyst system to control operation of the gas turbine engine, the gas engine, and the catalyst system.