Abstract:
A system for producing a suitable fuel from waste material including a dispersion tank in which is located a rotary dispersion and agitation system comprising external vanes, rotary and stationary plates having opposing faces fitted with intermeshing shear blocks, forming an attrition zone therebetween for grinding and dispersing solids in a liquid blend stock. A method is provided for varying the displacement between the shear blocks to control the fineness of the grinding of the waste material. A method is provided for discharging metal from the dispersion tank and a pump is provided for circulating liquid from the dispersion tank to an accumulation tank and for recirculating the liquid from the accumulation tank to the dispersion tank. Feeding systems are provided for delivering solid waste material to the dispersion tank and include systems for grinding drums containing waste material, expressing waste material from the drums and auguring waste material from the drums. The present invention also provide a method of processing waste material and a blend stock which provides a suitable fuel and includes the steps of grinding the waste material in a tank containing the blend stock with the grinding being in at least part provided by the coaction between a rotating impeller and a stationary plate so that the degree to which the waste material is ground is controlled by controlling the spacing between the plate and the impeller.
Abstract:
A method and apparatus for disposing of hazardous waste material by burning in a cement-producing kiln includes providing a predetermined quantity of hazardous waste material in a predetermined configuration, and providing an apparatus for aerating and using that apparatus to aerate the hazardous waste material to produce a supplementary fuel having a predetermined density. The method also includes providing an apparatus for injecting the hazardous waste material into the cement kiln and includes the step of injecting the hazardous waste material into the cement kiln at a predetermined injection rate thereby causing the hazardous waste material to burn while suspended in the kiln atmosphere and causing the hazardous waste material to supplement the primary fuel source and maintaining the cement-producing temperature within the kiln. A computer is provided for regulating the amount of primary fuel in relation to the amount of hazardous waste material being burned while maintaining the kiln temperature sufficient to produce cement therein.
Abstract:
A method is described for environmentally sound usage of combustible hazardous waste in an operating rotary kiln. The method is particularly adapted for disposal of solid hazardous wastes, optionally in the form of a blended waste homogenate, Packaged in sealable containers. The containers are used as fuel modules and charged into a rotary kiln cylinder where kiln gas temperatures range from about 950.degree. to about 1200.degree. C. to achieve high destruction and removal efficiencies.
Abstract:
A method is described for environmentally sound usage of combustible hazardous waste in an operating rotary kiln. The method is particularly adapted for disposal of solid hazardous wastes, optionally in the form of a blended waste homogenate, packaged in sealable containers. The containers are used as fuel modules and charged into a rotary kiln cylinder where kiln gas temperatures range from about 950.degree. to about 1200.degree. C. to achieve high destruction and removal efficiencies.
Abstract:
A method is described for environmentally sound usage of combustible hazardous waste in an operating rotary kiln. The method is particularly adapted for disposal of solid hazardous wastes, optionally in the form of a blended waste homoenate, packaged in sealable containers. The containers are used as fuel modules and charged into a rotary kiln cylinder where kiln gas temperatures range from about 950.degree. to about 1200.degree. C. to achieve high destruction and removal efficiencies.
Abstract:
The invention relates to a method of destroying hazardous waste, by means of under-stoichiometric incineration at a temperature of at least 1200.degree. C., the ratio between injected waste material and oxidant being regulated to give a quotient CO.sub.2 /(CO+CO.sub.2) of less than 0.1.
Abstract:
A method for the thermal treatment of dispersible raw material may inovlve introducing raw material into a riser tube that is perfused by hot gases and thermally treating the raw material with the hot gases. Furthermore, the method may inovle feeding a fuel to the riser tube. The fuel may initially dwell in a fuel-conditioning region on a bearing face, where the fuel comes into contact with a part of the hot gas that is mixed with the raw material. Consequently, the fuel is dried and/or at least partially de-gassed and/or at least partially reacted and subsequently transferred into the riser tube.
Abstract:
In a method for reprocessing wet waste materials containing organic components, in particular sludges in a cement clinker production plant, in which raw meal is preheated in a preheater (3) in countercurrent flow to the hot exhaust gases of a clinker furnace (2), and calcined in a calciner (4) fired with alternative fuels, the wet waste materials are dried in a drying unit (18) using a hot gas produced from the preheater waste heat and the dried waste materials and the drier exhaust gases are discharged from the drying unit (18), wherein the drier exhaust gases are introduced into the calciner (4).
Abstract:
A method for disposing of an organic waste of high water content according to the present invention, includes: a step in which by means of a heat exchanger (22), a heat exchange is carried out between superheated steam and exhaust gas extracted by a cyclone (2b) of a suspension preheater (2), the high temperature superheated steam that was subjected to the heat exchange is introduced to a dryer (23), thereby drying any organic sludge into a dried organic waste, and by means of the heat exchanger (22), the superheated steam used for the drying is subjected to another heat exchange, thereby recycling the superheated steam in the drying of the organic sludge; and a step in which the resulting dried organic sludge is supplied to a precalcining furnace (3) as fuel and combusted.
Abstract:
The co-combustion process may comprise the following unit operations: routing of hot gas (10) generated in the clinker cooling process to a rotary kiln (1); use of part of the rotary kiln exhaust gas to dry solid wastes in rotary dryers; leading the gases from both the dryer and the combustion kiln to the secondary combustion chamber (2); use of additional fuel to boost up the secondary combustion chamber reaction temperature to as high as 1200° C.; primary dry gas scrubbing in a precalciner or precalciners (3, 3a); heat recovery (4) and power generation; secondary gas scrubbing (5) in a semi-dry scrubber; bag filtering after activated carbon injection and returning of all the collected ash and used carbon into the waste kiln and/or a cement kiln. Detrimental materials for cement processing generated by waste combustion can be by-passed to a scrubbing system and a cement kiln. Residue slag from waste kilns can be treated and reused.