摘要:
A method includes receiving an address at a tag state array of a cache, wherein the cache is configurable to have a first size and a second size that is smaller than the first size. The method further includes identifying a first portion of the address as a set index, wherein the first portion has a same number of bits when the cache has the first size as when the cache has the second size. The method further includes using the set index to locate at least one tag field of the tag state array, identifying a second portion of the address to compare to a value stored at the at least one tag field, locating at least one state field of the tag state array that is associated with a particular tag field that matches the second portion, identifying a cache line based on a comparison of a third portion of the address to at least one status bit of the at least one state field when the cache has the second size, and retrieving the cache line.
摘要:
A device supporting big data in a process plant includes an interface to a communications network, a cache configured to store data observed by the device, and a multi-processing element processor to cause the data to be cached and transmitted (e.g., streamed) for historization at a unitary, logical centralized data storage area. The data storage area stores multiple types of process control or plant data using a common format. The device time-stamps the cached data, and, in some cases, all data that is generated or created by or received at the device may be cached and/or streamed. The device may be a field device, a controller, an input/output device, a network management device, a user interface device, or a historian device, and the device may be a node of a network supporting big data in the process plant. Multiple devices in the network may support layered or leveled caching of data.
摘要:
A change in workload characteristics detected at one tier of a multi-tiered cache is communicated to another tier of the multi-tiered cache. Multiple caching elements exist at different tiers, and at least one tier includes a cache element that is dynamically resizable. The communicated change in workload characteristics causes the receiving tier to adjust at least one aspect of cache performance in the multi-tiered cache. In one aspect, at least one dynamically resizable element in the multi-tiered cache is resized responsive to the change in workload characteristics.
摘要:
The present disclosure describes techniques and apparatuses for switching between processor cache and random-access memory. In some aspects, the techniques and apparatuses are able to reduce die size of application-specific components by forgoing dedicated random-access memory (RAM). Instead of using dedicated RAM, a memory having a cache configuration is reconfigured to a RAM configuration during operations of the application-specific component and then, when the operations are complete, the memory is configured back to the cache configuration. Because many application-specific components already include memory having the cache configuration, reconfiguring this memory rather than including a dedicated RAM reduces die size for the application component.
摘要:
In a particular embodiment, a cache is disclosed that includes a tag state array that includes a tag area addressable by a set index. The tag state array also includes a state area addressable by a state address, where the set index and the state address include at least one common bit.
摘要:
A cache is provided, including a data array having a plurality of entries configured to store a plurality of different types of data, and a tag array having a plurality of entries and configured to store a tag of the data stored at a corresponding entry in the data array and further configured to store an identification of the type of data stored in the corresponding entry in the data array.
摘要:
In an embodiment, a non-transparent memory unit is provided which includes a non-transparent memory and a control circuit. The control circuit may manage the non-transparent memory as a set of non-transparent memory blocks. Software executing on one or more processors may request a non-transparent memory block in which to process data. The control circuit may allocate a first block, and may return an address (or other indication) of the allocated block so that the software can access the block. The control circuit may also provide automatic data movement between the non-transparent memory and a main memory system to which the non-transparent memory unit is coupled. For example, the automatic data movement may include filling data from the main memory system to the allocated block, or flushing the data in the allocated block to the main memory system after the processing of the allocated block is complete.
摘要:
One embodiment of the present invention sets forth a technique for addressing data in a hierarchical graphics processing unit cluster. A hierarchical address is constructed based on the location of a storage circuit where a target unit of data resides. The hierarchical address comprises a level field indicating a hierarchical level for the unit of data and a node identifier that indicates which GPU within the GPU cluster currently stores the unit of data. The hierarchical address may further comprise one or more identifiers that indicate which storage circuit in a particular hierarchical level currently stores the unit of data. The hierarchical address is constructed and interpreted based on the level field. The technique advantageously enables programs executing within the GPU cluster to efficiently access data residing in other GPUs using the hierarchical address.
摘要:
Aspects of a method and system for an on-chip configurable data RAM for fast memory and pseudo associative caches are provided. Memory banks of configurable data RAM integrated within a chip may be configured to operate as fast on-chip memory or on-chip level 2 cache memory. A set associativity of the on-chip level 2 cache memory may be same after configuring the memory banks as prior to the configuring. The configuring may occur during initialization of the memory banks, and may adjusted the amount of the on-chip level 2 cache. The memory banks configured to operate as on-chip level 2 cache memory or as fast on-chip memory may be dynamically enabled by a memory address.