摘要:
A single phase consisting of a ThMn12 phase can be obtained by having the composition thereof represented by a general formula R(Fe100-y-wCowTiy)xSizAv (in the general formula, R is at least one element selected from rare earth elements (here the rare earth elements signify a concept inclusive of Y), Nd accounts for 50 mol % or more of R, and A is N and/or C) in which the molar ratios in the general formula are such that x=10 to 12.5, y=(8.3−1.7×z) to 12.3, z=0.1 to 2.3, v=0.1 to 3 and w=0 to 30, and the relation (Fe+Co+Ti+Si)/R>12 is satisfied.
摘要翻译:由ThMn12相组成的单相可以通过使其组成由通式R(Fe100-y-wCowTiy)xSizAv表示(在通式中,R是选自稀土元素中的至少一种元素(这里是 稀土元素表示包括Y)的概念,Nd占R的50摩尔%以上,A是N和/或C),其中通式中的摩尔比使得x = 10〜12.5,y =(8.3-1.7×z)〜12.3,z = 0.1〜2.3,v = 0.1〜3,w = 0〜30,满足关系式(Fe + Co + Ti + Si)/R≥12。
摘要:
An iron-based rare earth alloy magnet has a composition represented by the general formula: (Fe1-mTm)100-x-y-zQxRyMz, where T is at least one element selected from the group consisting of Co and Ni; Q is at least one element selected from the group consisting of B and C; R is at least one rare earth element substantially excluding La and Ce; and M is at least one metal element selected from the group consisting of Ti, Zr and Hf and always includes Ti. In this formula, the mole fractions x, y, z and m meet the inequalities of: 10 at %
摘要翻译:铁基稀土合金磁体具有由以下通式表示的组成:(Fe 1-m M t)100-xy z Q 其中T是选自Co和Ni中的至少一种元素;其中T是选自Co和Ni中的至少一种元素; Q是选自B和C中的至少一种元素; R是至少一种稀土元素,基本上不含La和Ce; 并且M是选自Ti,Zr和Hf中的至少一种金属元素,并且始终包括Ti。 在该公式中,摩尔分数x,y,z和m满足以下不等式:10 at%
摘要:
A corrosion resistant rare earth magnet is obtained by (i) applying a treating liquid comprising a flaky fine powder and a metal sol to a surface of R—T—M—B rare earth permanent magnet and then heating to form a composite film of flaky fine powder/metal oxide on the magnet surface; (ii) applying a treating liquid comprising a flaky fine powder and a silane and/or a partial hydrolyzate thereof to a surface of R—T—M—B rare earth permanent magnet and then heating a flaky fine powder/silane and/or partially hydrolyzed silane coating to form a composite film on the magnet surface; or (iii) applying a treating liquid comprising a flaky fine powder and an alkali silicate to a surface of R—T—M—B rare earth permanent magnet and then heating to form a composite film of flaky fine powder/alkali silicate glass on the magnet surface.
摘要:
An R-T-B—C rare earth sintered magnet (R═Ce, Pr, Nd, Tb, or Dy; T=Fe) is obtained by mixing an R-T-B—C magnet matrix alloy with an R fluoride and an R-rich R-T-B—C sintering aid alloy, followed by pulverization, compaction and sintering. The sintered structure consists of an R2T14B type crystal primary phase and a grain boundary phase. The grain boundary phase consists essentially of 40-98 vol % of R—O1-x—F1+2x and/or R—Fy, 1-50 vol % of R—O, R—O—C or R—C compound phase, 0.05-10 vol % of R-T phase, 0.05-20 vol % of B-rich phase or M-B2 phase (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta or W), and the balance of an R-rich phase.
摘要翻译:将RTBC稀土烧结磁体(R-Ce,Pr,Nd,Tb或Dy; T = Fe)通过将RTBC磁体基质合金与R氟化物和富R的RTBC烧结助剂合金混合,然后粉碎 ,压实和烧结。 该烧结结构由R 2 S 14 N 14 B型晶体初相和晶界相组成。 晶界相基本上由40-98%(重量)的RO 1-x 1 -F 1 + 2 +和/或RF Y 1, -50体积%的RO,ROC或RC化合物相,0.05-10体积%的RT相,0.05-20体积%的富B相或MB 2相(M = Ti,V, Cr,Zr,Nb,Mo,Hf,Ta或W),余量为富R相。
摘要:
Magnetic alloy powder for a permanent magnet contains: R of about 20 mass percent to about 40 mass percent (R is Y, or at least one type of rare earth element); T of about 60 mass percent to about 79 mass percent (T is a transition metal including Fe as a primary component); and Q of about 0.5 mass percent to about 2.0 mass percent (Q is an element including B (boron) and C (carbon)). The magnetic alloy powder is formed by an atomize method, and the shape of particles of the powder is substantially spherical. The magnetic alloy powder includes a compound phase having Nd2Fe14B tetragonal structure as a primary composition phase. A ratio of a content of C to a total content of B and C is about 0.05 to about 0.90.
摘要翻译:用于永磁体的磁性合金粉末包含:R为约20质量%至约40质量%(R为Y或至少一种稀土元素); T为约60质量%至约79质量%(T为包含Fe为主要成分的过渡金属); 和Q为约0.5质量%至约2.0质量%(Q为包含B(硼)和C(碳)的元素)。 磁性合金粉末通过雾化法形成,粉末的形状基本上是球形的。 磁性合金粉末包括具有Nd 2 Fe 14 B四方晶系的化合物相作为主要组成相。 C与B和C的总含量之比为约0.05至约0.90。
摘要:
A method of making a material alloy for an iron-based rare earth magnet includes the step of forming a melt of an alloy with a composition of (Fe1-mTm)100-x-y-z-n(B1-pCp)xRyTizMn. T is Co and/or Ni; R is at least one element selected from Y (yttrium) and the rare earth elements; and M is at least one element selected from Al, Si, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Au and Pb, wherein the following inequalities are satisfied: 10
摘要:
The step of preparing a rapidly solidified alloy by rapidly quenching a melt of an R-T-B-C based rare-earth alloy (where R is at least one of the rare-earth elements including Y, T is a transition metal including iron as its main ingredient, B is boron, and C is carbon) and the step of thermally treating and crystallizing the rapidly solidified alloy are included. The step of thermally treating results in producing a first compound phase with an R2Fe14B type crystal structure and a second compound phase having a diffraction peak at a site with an interplanar spacing d of 0.295 nm to 0.300 nm (i.e., where 2nullnull30 degrees). An intensity ratio of the diffraction peak of the second compound phase to that of R2Fe14B type crystals representing a (410) plane is at least 10%. The present invention provides an R-T-B-C based rare-earth alloy magnetic material, including carbon (C) as an indispensable element but exhibiting excellent magnetic properties, and makes it possible to recycle rare-earth magnets.
摘要:
The present invention is a production method of an R-T-B-C rare earth alloy (R is at least one element selected from the group consisting of rare earth elements and yttrium, T is a transition metal including iron as a main component, B is boron, and C is carbon). An R-T-B bonded magnet containing a resin component, or an R-T-B sintered magnet with a resin film formed on the surface thereof is prepared, and a solvent alloy containing a rare earth element R and a transition metal element T is prepared. Thereafter, the R-T-B bonded magnet is molten together with the solvent alloy. In this way, a rare earth alloy can be recovered from a spent bonded magnet or a defective one generated in a production process stage, and a rapidly quenched alloy magnet can be obtained. As a result, magnet powder is recovered from the R-T-B magnet, and the recycling of a magnet including a resin component can be realized.
摘要:
An iron-based rare earth alloy magnet has a composition represented by the general formula: (Fe1-mTm)100-x-y-zQxRyMz, where T is at least one element selected from the group consisting of Co and Ni; Q is at least one element selected from the group consisting of B and C; R is at least one rare earth element substantially excluding La and Ce; and M is at least one metal element selected from the group consisting of Ti, Zr and Hf and always includes Ti. In this formula, the mole fractions x, y, z and m meet the inequalities of: 10 at %
摘要:
Nanocrystalline and nanocomposite rare earth permanent magnet materials and methods for making the magnets are provided. The magnet materials can be isotropic or anisotropic and do not have a rare-earth rich phase. The magnet materials comprise nanometer scale grains and possesses a potential high maximum energy product, a high remancence, and a high intrinsic coercivity. The magnet materials having these properties are produced by using methods including magnetic annealing and rapid heat processing.