Abstract:
A Plasma Display Panel (PDP) displays images of high image quality by sufficiently exhausting an impurity gas and charging a discharge gas and by preventing cross talk from occurring between discharge cells. The PDP includes a transparent front substrate and a rear substrate facing the front substrate; a plurality of barrier ribs, arranged between the front and rear substrates, and oriented in a direction to define a plurality of discharge cells in which a discharge occurs; a plurality of electrodes adapted to receive electrical potentials to generate electric fields in the discharge cells; a phosphor layer arranged in the discharge cells; and a discharge gas contained within the discharge cells.
Abstract:
A barrier rib structure of plasma display panel is disclosed. The barrier rib structure includes a plurality of vertical barrier ribs arranged in parallel, a plurality of first horizontal barrier ribs connected to one side of the vertical barrier ribs, and a plurality of second horizontal barrier ribs connected to the other side of the vertical barrier ribs, in which the first horizontal barrier ribs are disposed alternately with corresponding second horizontal barrier ribs for forming a plurality of double blockade structures. Additionally, a gas passage and a plurality of electrical discharge spaces are formed between the double blockade structures.
Abstract:
A plasma display panel in which exhaust performance is improved comprises a lower plate and a upper plate disposed opposite to each other. The lower plate comprises exhaust means for exhausting gas from the plasma display panel. The exhaust means comprises exhaust grooves formed on a front surface of a lower plate (or a back substrate). The exhaust grooves extend in a direction in which address electrodes or sustain electrodes extend.
Abstract:
Example embodiments relate to a plasma display panel including a first flexible substrate and a second flexible substrate opposing each other, a flexible electrode sheet having a plurality of electrodes to define a plurality of discharge spaces, the flexible electrode sheet may be between the first flexible substrate and the second flexible substrate, an exhaustion hole engaged with the second flexible substrate and may connect the discharge spaces to an outside, and a supporting unit installed between the first flexible substrate and the second flexible substrate adjacent to the exhaustion hole may be mounted, so as to connect the discharge spaces to the exhaustion hole.
Abstract:
Disclosed are a plasma display panel with a low refractive index, to which an exhaust pipe is stably adhered, and a dielectric composition for manufacturing the plasma display panel are disclosed. The plasma display panel includes a first substrate including a first electrode and a first dielectric, a second substrate including a second electrode and a second dielectric, and a barrier rib and a sealing portion, each arranged between the first substrate and the second substrate, wherein at least one selected from the first dielectric, the second dielectric, the barrier rib and the sealing portion includes inorganic particles and a photosensitive organic silicon compound, each of which has a refractive index of 1.5 to 1.7 and is contained in an amount of 10 to 90% by weight. Disclosed is further a method for manufacturing the plasma display panel.
Abstract:
A plasma display panel including a first panel, address electrodes formed on the first panel in a predetermined pattern, a first dielectric layer formed on the first panel and covering the address electrodes, a partition structure having unit partitions discontinuously formed on the first dielectric layer to partition a discharge space, the unit partitions being parallel to the address electrodes and each having auxiliary partitions, red, green and blue phosphor layers coated in the partitioned discharge space, a second panel, which is coupled to the first panel to form the discharge space and which is transparent, a plurality of pairs of sustaining electrodes formed on an inner surface of the second panel and having sets of first and second electrodes at a predetermined angle with respect to the address electrodes, and a second dielectric layer formed on the second panel and covering the sustaining electrodes.
Abstract:
A plasma display panel is disclosed, which prevents luminance from being reduced, prevents error discharge from occurring due to crosstalk, and improves exhaust ability. Auxiliary barriers or projections are formed in a boundary portion between respective cells in a stripe type barrier structure. Alternatively, a predetermined groove is formed in a predetermined position of a dielectric layer in a lattice shaped barrier structure. In addition to these barriers, second barriers are formed at a greater width or at constant intervals. Thus, exhaust ability can be improved, and error discharge due to crosstalk can be prevented from occurring. Also, luminance in corner portions of the cell can be improved, and contrast can be improved even if a black matrix is not formed.
Abstract:
A plasma display panel and the manufacturing method thereof. Forming partition wall structures on the back substrate of the paste display panel and forming the column-shaped protrusions at the positions corresponding to the cuts on the rib on the front substrate of the plasma display panel. The manufacturing process is simple and the alignment of the front and back substrate is easy. In addition, the size of the opening of the rib and the size of the cut can be easily adjusted according to the needs of the application during the manufacturing process.
Abstract:
A plasma display panel and the manufacturing method thereof. Forming partition wall structures on the back substrate of the paste display panel and forming the column-shaped protrusions at the positions corresponding to the cuts on the rib on the front substrate of the plasma display panel. The manufacturing process is simple and the alignment of the front and back substrate is easy. In addition, the size of the opening of the rib and the size of the cut can be easily adjusted according to the needs of the application during the manufacturing process.
Abstract:
A PDP with superior light-emitting characteristics and color reproduction is achieved by setting the chromaticity coordinate y (the CIE color specification) of light to 0.08 or less, more preferably to 0.07 or less, or 0.06 or less, enabling the color temperature of light to be set to 7,000K or more, and further to 8,000K or more, 9,000K or more, or 10,000K or more. The PDP is manufactured by a method in which the processes for heating the fluorescent substances such as the fluorescent substance baking, sealing material temporary baking, bonding, and exhausting processes are performed in the dry gas atmosphere, or in an atmosphere in which a dry gas is circulated at a pressure lower than the atmospheric pressure. This PDP is also manufactured by: a method in which after the front and back panels are bonded together, the exhausting process for exhausting gas from the inner space between panels is started while the panels are not cooled to room temperature; or a method in which after the front and back panels are temporarily baked, the process for bonding the panels is started while the panels are not cooled to room temperature. This reduces the time and energy required for heating, resulting in reduction of manufacturing cost.