Abstract:
The invention relates to light sources with laser pumping and to methods for generating radiation with a high luminance in the ultraviolet (UV) and visible spectral ranges. The technical result of the invention includes extending the functional possibilities of a light source with laser pumping by virtue of increasing the luminance, increasing the coefficient of absorption of the laser radiation by a plasma, and significantly reducing the numerical aperture of a divergent laser beam which is to be occluded and which is passing through the plasma. The device comprises a chamber containing a gas, a laser producing a laser beam, an optical element, a region of radiating plasma produced in the chamber by the focused laser beam, an occluder, which is mounted on the axis of the divergent laser beam on the second side of the chamber, and an optical system for collecting plasma radiation.
Abstract:
This light source 1 is provided with a luminescent cylinder 3A housing a luminescent part 2 to generate light; a light guide cylinder 3B connected to the luminescent cylinder 3A on a one end side, and configured to guide the light generated by the luminescent part 2, to an exit window 4 provided on the other end side; and a cylindrical reflective cylinder 9 inserted and fixed between the exit window 4 of the light guide cylinder 3B and a portion connecting the luminescent cylinder 3A and the exit window 4, and having an inner wall surface as a reflective surface 9a to reflect the light.
Abstract:
A pixel structure of display apparatus includes a first substrate and a second substrate. Several cathode structure layers are disposed on the first substrate. The second substrate is a light-transmissive material. Several anode structure layers are disposed on the second substrate, and are light-transmissive conductive materials. The first substrate faces to the second substrate, so that the cathode structure layers are respectively aligned with the anode structure layers. A separation structure is disposed between the first substrate and the second substrate, for respective partitioning the anode structure layers and the cathode structure layers to form several spaces. Several fluorescent layers are respectively disposed between the anode structure layers and the cathode structure layers. A low-pressure gas is respectively filled into the spaces. The low-pressure gas has an electron mean free path, allowing at least sufficient amount of electrons to directly impinge the fluorescent layer under an operation voltage.
Abstract:
An electron emission light-emitting device includes a cathode structure, an anode structure, a fluorescent layer, and a low-pressure gas layer. The fluorescent layer is located between the cathode structure and the anode structure. The low-pressure gas layer is filled between the cathode structure and the anode structure, having a function of inducing the cathode to emit electron uniformly. The low-pressure gas layer has an electron mean free path, allowing at least sufficient amount of electrons to directly impinge the fluorescent layer under an operation voltage.
Abstract:
A light source has a rear glass substrate and a front glass substrate having a plate surface disposed in facing relation to a principal surface of the rear glass substrate. The plate surface of the front glass substrate is coated with a phosphor. A two-dimensional array of electron emitters is disposed on the principal surface of the rear glass substrate. A space defined between the rear glass substrate and the front glass substrate is filled with a gas. The gas may be an Hg (mercury) gas or an Xe (xenon) gas.
Abstract:
The invention relates to a light source (1) with a discharge vessel (12) which is filled with a filling gas, and with an electron beam source (2) which is arranged in vacuum or in a region of low pressure and which generates electrons, propelling the latter through an entry foil (10) into the discharge vessel (12). According to the invention, an electric field can be generated inside the discharge vessel (12).
Abstract:
The present invention may be used in the field of microelectronics, in medicine as well as in the production of lighting appliances. The method and the device of the present invention are used for increasing the brightness of optical radiation sources powered by low-voltage power supplies. The optical radiation is generated by emitting electrons and by exciting the radiation. The electrons are generated by emitting the same from the surface of a cathode, while the excitation of the radiation involves accelerating the electrons in the gaseous interval up to an energy exceeding the excitation energy of the radiating levels of the gas. To this end, a voltage is applied between the cathode and the anode, wherein said voltage does not exceed the ignition voltage of a self-maintained discharge. The device of the present invention comprises a chamber as well as electrodes having surfaces which are transparent to the radiation. The gas pressure inside the chamber is determined from balance conditions between the energetic length of an electron trip and the distance between said electrodes.
Abstract:
An electronic light radiation tube wherein a cathode and an anode disposed as spaced from each other by a small spacing are housed in an envelope enclosing therein a luminous gas, and a magnetic field is applied to the envelope so as to cause magnetic lines of force of the magnetic field to pass through the envelope, while the magnetic lines of force which have passed through the cathode are prevented from passing through the anode, whereby electrons emitted from the cathode are caused to collide at a high efficiency with the luminous gas throughout the entire interior space of the envelope to excite the gas, and highly uniform light radiation can be realized over the entire envelope.
Abstract:
A gas discharge device includes a thin glass tube filled with a discharge gas; a pair of first and second long electrodes extending toward either side along a longitudinal direction with a discharge gap interposed therebetween are provided outside of a back side flat surface of a thin glass tube; and a ultraviolet phosphor layer formed on an inner surface at the back side flat surface, the thin glass tube filled with a discharge gas having a front side flat surface and the back side flat surface facing each other on a transverse section, wherein, starting with trigger discharge that is initially generated in the discharge gap as a result of a voltage increase when a voltage with a sine waveform or an inclined waveform is applied between both electrodes, the discharge gradually extends so as to move in the longitudinal direction of the electrodes. Ultraviolet light having high luminous efficiency and emission intensity is obtained from a front side surface of the thin glass tube by driving the device with a sine-wave AC voltage.