摘要:
An oscillator circuit with an oscillator stage and a first current source arranged to drive the oscillator stage is presented. The oscillator stage has an oscillator stage input terminal, an oscillator stage output terminal, an oscillator arranged to provide an oscillating signal between the oscillator stage input terminal and the oscillator stage output terminal. The oscillator circuit has an operational amplifier with an inverting input, a non-inverting input and an operational amplifier output. The oscillator stage input terminal and the oscillator stage output terminal are coupled to the inverting input and non-inverting input. The operational amplifier output is coupled to the oscillator stage input terminal such that the oscillator stage input terminal and the oscillator stage output terminal are controlled to have a same DC voltage level.
摘要:
In an example embodiment, an apparatus includes an LC circuit having a capacitive circuit and an inductive circuit connected in a circuit loop. The inductive circuit includes one or more inductive elements and a switching circuit. In a first mode, the switching circuit provides a direct-current charge voltage across the LC circuit and prevents oscillation of energy between the capacitive circuit and the inductive circuit by opening a switch in the circuit loop of the LC circuit. In a second mode, the switching circuit enables oscillation of energy between the capacitive circuit and the inductive circuit by closing the switch in the circuit loop.
摘要:
In an example embodiment, an apparatus includes an LC circuit having a capacitive circuit and an inductive circuit connected in a circuit loop. In a first mode, a switching circuit in the inductive circuit provides a charge voltage across the LC circuit and prevents oscillation of the LC circuit by opening a switch in the circuit loop. In a second mode, the switching circuit enables the oscillation of the LC circuit by closing the switch in the circuit loop. The adjustable capacitive circuit includes capacitive branch circuits configured to contribute a first amount of capacitance when enabled. For each capacitive branch circuit, an initialization circuit couples the set of capacitors to a respective reference voltage in response to the capacitive branch circuit being disabled and the switching circuit operating in the first mode.
摘要:
A dynamic gearshifting system includes a monitoring device configured to monitor a duty cycle of a clock output signal of a crystal oscillator circuit during oscillation buildup upon power-up of the crystal oscillator circuit. The dynamic gearshifting system also includes a detecting device configured to detect whether the duty cycle of the clock output signal of the crystal oscillator circuit meets a duty cycle threshold value. The dynamic gearshifting system may further include an assertion device configured to assert a control signal based on detecting the duty cycle meets the duty cycle threshold value. The asserted control signal configured to dynamically adjust a transconductance of the crystal oscillator circuit.
摘要:
A crystal unit includes: a crystal piece; an excitation electrode configured to excite the crystal piece; a case configured to accommodate the crystal piece; an external electrode formed in the case and configured to be electrically connected to the excitation electrode; and an antenna formed in the case and configured to be electrically connected to the external electrode.
摘要:
PROBLEM: To generate a self-oscillation in a stable manner and at a low cost in a self-oscillating radio frequency oscillation circuit for high-power applications used for plasma generation in an ICP emission spectrometer or for other purposes.SOLUTION: A secondary winding 38 of a starting transformer is arranged in an LC resonance circuit 30 including an induction coil 9, capacitor 36 and other elements. A starter 6, e.g. a Clapp oscillator circuit, is connected to a primary winding 5 magnetically coupled with the winding 38. A radio-frequency current is induced in the LC resonance circuit 30 through the primary and secondary windings 5 and 38 by energizing the starter 6 for a certain period of time in a starting phase. As a result, electric current flows through the secondary windings 11, 14, 17 and 20 in a full-bridge drive circuit 10 which are magnetically coupled with primary windings 32, 33, 34 and 35, respectively, whereby voltage is developed between the gate and source of MOSFETs 13, 16, 19 and 22, causing these MOSFETs 13, 16, 19 and 22 to begin an ON/OFF operation, whereby the self-oscillation is started.
摘要:
A drive loop circuit for a MEMS resonator. The circuit comprises a closed loop circuit to detect and amplify a signal of the MEMS resonator, a phase shifting circuit to phase shift the detected and amplified signal, and a feedback circuit to feed the detected, amplified and phase shifted signal as a feedback signal back to the MEMS resonator. The phase shifting circuit can include a low pass filter of at least 2nd order.
摘要:
A calibrated crystal warm-up method that can include determining the number of clock cycles of a crystal clock reference signal from a crystal oscillator occur during a single clock cycle of a low-power oscillator. Further, the determination can occur when the crystal oscillator is warmed up. The method can also include comparing a number of clock cycles of the crystal clock reference signal with a previously determined number of clock cycles of the crystal clock reference signal to indicate whether the crystal oscillator is warmed up. Further, the method can include counting the number of clock cycles of a low-power clock reference signal have occurred up until the time it has been determined that the crystal oscillator has been warmed up.
摘要:
This invention is directed to achieve the oscillator circuit with a shorter oscillation stabilizing period and a lower consumption of the electric current. The oscillator circuit 10 has the amplifier circuit (inverter circuit 11), and the clock signal CLK is outputted from the output terminal of the inverter circuit 11. The inverter circuit 11 is configured from the first inverter 12 and the second inverter 13. The inverter circuit 11 is connected to the control circuit 30 and the control signal Ctrl controls the driving capacity of the inverter circuit 11. For example, high level control signals Ctrl 1 (H) and Ctrl 2 (H) are supplied to the first and the second inverters 12, 13 for a certain period of time right after the oscillator circuit 10 starts its operation until the oscillation is stabilized, operating both inverters. Then, either the first inverter 12 or the second inverter 13 continues its operation and the other inverter stops the operation.
摘要:
Oscillator circuits include a MEMs resonator, a variable impedance circuit (e.g., varistor) and an adjustable gain amplifier. The variable impedance circuit includes a first terminal electrically coupled to a first terminal of the MEMs resonator and the adjustable gain amplifier is electrically coupled to the variable impedance circuit. The adjustable gain amplifier may have an input terminal electrically coupled to the variable impedance circuit and a second terminal of the MEMs resonator may receive, as feedback, a signal derived from an output of the adjustable gain amplifier. A Q-factor control circuit may be provided, which is configured to drive the variable impedance circuit and the adjustable gain amplifier with first and second control signals, respectively, that cause an impedance of the variable impedance circuit and a gain of the adjustable gain amplifier to be relatively high during a start-up time interval and relatively low during a post start-up time interval.