Abstract:
In an example embodiment, an apparatus includes an LC circuit having a capacitive circuit and an inductive circuit connected in a circuit loop. In a first mode, a switching circuit in the inductive circuit provides a charge voltage across the LC circuit and prevents oscillation of the LC circuit by opening a switch in the circuit loop. In a second mode, the switching circuit enables the oscillation of the LC circuit by closing the switch in the circuit loop. The adjustable capacitive circuit includes capacitive branch circuits configured to contribute a first amount of capacitance when enabled. For each capacitive branch circuit, an initialization circuit couples the set of capacitors to a respective reference voltage in response to the capacitive branch circuit being disabled and the switching circuit operating in the first mode.
Abstract:
A resonator for a high frequency electric oscillator is disclosed. The resonator is and integrated capacitor and inductor. The capacitance and inductance of the resonator are continuously and simultaneously adjustable. The resonator includes a coaxial portion and a conductor portion. The coaxial portion has an inner dielectric with a longitudinal aperture and an outer conductive sheath or outer conductor. The conductor portion has a straight section slidable in the aperture and a V shaped bent or oblique section.
Abstract:
A microwave oscillator having at least one transistor (1), which may be bipolar or otherwise. A tunable reactive circuit (13, 15, 16) suitable for adjusting the transistor's zone of potential instability is inserted in the emitter circuit of the transistor (1) (or in the source circuit of an FET). The reactive circuit comprises a series length of transmission line (13) and a parallel capacitance (15, 16) constituted, at least in part, by a conducting slab (15) of adjustable size.
Abstract:
A first pair of NPN transistors operate to amplify and limit an input signal. A second pair of NPN transistors, gated on by the first pair, function to provide the circuit output when an input is applied, and function together in conjunction with an RLC tank to oscillcate a predetermined frequency when no input is applied.
Abstract:
A variable inductor includes: a first inductor having two ends connected to a first terminal and a second terminal; a second inductor having two ends connected to the first terminal and the second terminal; a first node provided on the first inductor; a second node provided on the second inductor; and a switch element that switches between a conductive state and a non-conductive state between the first node and the second node.
Abstract:
A variable inductor includes: a first inductor having two ends connected to a first terminal and a second terminal; a second inductor having two ends connected to the first terminal and the second terminal; a first node provided on the first inductor; a second node provided on the second inductor; and a switch element that switches between a conductive state and a non-conductive state between the first node and the second node.
Abstract:
A voltage controlled oscillator including a resonator which generates an oscillation signal, a frequency of which is in response to a control signal, and an amplifier which amplifies the oscillation signal. Also included is a frequency adjusting mechanism, as well as a voltage control sensitivity mechanism. In one example, the resonator includes an input terminal to which the control signal is applied, a variable capacitance diode and a main inductor. The oscillation frequency adjusting mechanism includes a first variable capacitor, arranged in parallel with the main inductor of the resonator. In addition, the voltage control sensitivity adjusting mechanism includes a second variable capacitor arranged between the input terminal and the amplifying mechanism, and also arranged between a hot terminal of the variable capacitance diode and a hot terminal of the main inductor.
Abstract:
A coin validator tests a coin using a pair of coils coupled in an oscillator circuit which is arranged to drive both the coils concurrently at two separate frequencies without interference therebetween, each frequency signal being influenced by the presence of a coin. Preferably, the coils are connected in series in a feedback loop to form a first oscillator, and the second oscillator is coupled to the interconnection between the coils the other ends of which are effectively short circuited at the frequency of the second oscillator.
Abstract:
A tuner circuit includes a first IF signal generating a first oscillation signal, a local oscillator circuit outputting a local oscillator signal, a mixing circuit mixing the first IF signal and the oscillation signal to generate a second IF signal, and a first substrate on which at least the local oscillator signal is formed. The local oscillator circuit includes an oscillation circuit and a coaxial resonator connected to the oscillation circuit for correcting the influence of change in oscillation frequency owing to moisture and secular change. The coaxial resonator includes an impedance variable trimmer portion for adjusting the oscillation frequency, a central conductor provided at a fixed position with respect to the first substrate, and an insulator for providing insulation between the impedance variable trimmer and the central conductor. The impedance variable trimmer portion and the central conductor are adhered to one another via the insulator after adjusting is completed.