摘要:
In a delta sigma modulator, generally comprising one or more integrators fed into a multilevel quantizer, the output of which is the output of the delta sigma modulator and is also fed through a digital to analog converter in a feedback loop to the integrators, the quantizer is made sparse, i.e. the levels output by the quantizer are not evenly spaced, but rather are closely spaced for small deviations from 0 V, and broadly spaced for large deviations from 0V. The A/D converter in the feedback is matched to the quantizer. For example, the levels might be -1 V, -1/8 V, 0V, 1/8 V, and 1 V. The digital output signal from the sparse quantizer is fed into a correction RAM, which corrects for nonlinearities in the D/A converter before the digital signal is filtered by a low pass filter and frequency down converted. The contents of the RAM are selected whenever the A/D conversion system is powered on. The contents of the RAM are selected by closing a series of sets switches in the A/D converter and adjusting the output of the RAM to 0.
摘要:
A system and method for reducing linearity errors in a delta-sigma converter. The linearity errors in the delta-sigma converter are modeled by generating a set of digital signals representative of an inputted sine wave. The set of digital signals are low-pass filtered and subjected to a fast Fourier transform algorithm to generate a frequency domain representation of the sine wave. Thereafter, a net linearity error spectrum is removed from the frequency domain representation and inverse Fourier transform back into the time domain. The filtered set of digital signals are also sorted into subsets of digital signals where each signal in a subset corresponds to a particular output of a delta-sigma modulator contained within the delta-sigma converter. A fast Fourier transform algorithm is applied to each of the filtered subsets of digital signals to generate a frequency domain representation thereof. Specific linearity errors are generated by applying an inverse Fourier transform algorithm to each of the specific linearity error spectrums in the frequency domain representations of the filtered subsets of digital signals. Thereafter, linearity error correction coefficients are generated as a function of the net linearity error and the specific linearity errors. The linearity error correction coefficients are used to generate entries in a look-up table where the entries are adjustable by digital outputs of the delta-sigma modulator. The look-up table is used to correct digital signals outputted by the delta-sigma modulator prior to decimation and digital filter.
摘要:
A delta sigma modulator which enables each cascaded integrator to settle independently within a full clock period and uses binomial coefficients in the feedback paths to obtain the required sinusoidal shaping of quantizer error, achieves an increase in both the sampling rate and the order to improve resolution. Using a multi-bit quantizer also improves modulator resolution. In one embodiment, the modulator includes a plurality of cascaded unit-delay integrators and utilizes binomial coefficient scaling in the feedback loop. A multi-bit analog-to-digital converter is coupled to receive the output signal of the cascaded unit-delay integrators. The feedback loop includes a multi-bit digital-to-analog converter coupled to the output of the multi-bit analog-to-digital converter. The output of the digital-to-analog converter is coupled to the inputs of at least the first and second differential summing junctions.
摘要:
An analog-to-digital converter includes a filter having an input for receiving, via a summing node, a signal derived from the analog input signal. A first quantizer produces a first digital signal from a signal derived from the output of the filter. A feedback loop feeds a signal derived from the first digital signal to be combined in analog form with the signal derived from the analog input signal at the summing node, so that the filter in use receives an error signal representing the difference between the signal derived from the analog input signal and the analog representation of the first digital signal. An error signal filter filters the error signal to remove noise outside the passband of the analog-to-digital converter. A second quantizer produces a second digital signal representative of the filtered error signal, and a combining circuitry combines the first and second digital signals to produce a digital output signal representative of the analog input signal.
摘要:
A modulator includes an analog integrator including an analog circuit and a quantizer quantizing its output signal. An external input signal is input thereto. A modulator is coupled to the latter stage of the modulator, and includes a quantizer. A probe signal generation circuit injects a probe signal to the modulator. An adaptive filter searches for a transfer function of the modulator by observing an output signal of the quantizer in accordance with a probe signal. Another adaptive filter searches for a transfer function of the modulator by observing an output signal of the quantizer in accordance with the probe signal. A noise cancel circuit cancels a quantization error generated by the quantizer using search results of the adaptive filters.
摘要:
In the present embodiment, quantizer output values including variation values corresponding to duty errors of pulse width data (PWM output signals) occurring by the difference of the pull-down/pull-up drive characteristics (drive capabilities) of a buffer are stored in advance in a feedback value memory in a quantizer as feedback values FBV0 to FBV4, and a feedback value FBVn read out from the feedback value memory in response to the quantization of a delta-sigma modulation output is inputted into a subtractor by return input. Then, a quantizer output value including a variation value corresponding to a duty error is subtracted from input data Din, and delta-sigma modulation is performed such that the difference is minimized, whereby the duty error of pulse width data (PWM output signal) is compensated.
摘要:
A delta-sigma analog-to-digital converter (ΔΣ ADC) has a delta-sigma modulator, a decimation filter and an error suppression circuit. The delta-sigma modulator receives an analog input, and converts the analog input into a first digital output. The decimation filter is coupled to the delta-sigma modulator, and generates a second digital output according to the first digital output. The error suppression circuit is coupled to the decimation filter, and receives an error input and injects an error output into the second digital output according to the error input.
摘要:
A sigma-delta digital-to-analog converter (SD DAC) exhibits undesirable distortion when implemented in an integrated circuit due to the non-linearity of polysilicon resistors used in the filtering stages of the SD DAC. By using resistors other than polysilicon for the output resistor of an SD DAC, distortion can be reduced or eliminated. Additionally or alternatively, by generating an error correction signal, the distortion can be corrected.
摘要:
A sensor output correction circuit includes an analog-to-digital converter configured to receive an input voltage corresponding to a sensor output of a sensor and a reference voltage that are selectively input to the analog-to-digital converter; and an arithmetic unit configured to correct output data, which is output from the analog-to-digital converter when the input voltage is input to the analog-to-digital converter, based on an output value that is output from the analog-to-digital converter when the reference voltage is input to the analog-to-digital converter. The arithmetic unit includes a multiply adder and a non-restoring divider.
摘要:
A ΔΣ modulation digital-analogue converter of the present invention includes: a look-up table in which a correspondence relationship between each of a plurality of possible input values of an input signal externally supplied, and each of compensation values individually associated with the possible input values, are stored; and a nonlinear compensation circuit (6) for compensating the input signal externally supplied, based on a compensation value associated with the input signal among the compensation values, and supplying a ΔΣ modulation section (1) the input signal thus compensated. A sine wave is used as the input signal. The compensation value is set based on magnitudes of a spectrum of odd-order harmonics whose frequencies are A times more than a frequency of the sine wave (A is an odd number), the spectrum obtained in such a manner that an output of a D-Class amplifier (2) or an output of the ΔΣ modulation digital-analogue converter is subjected to a frequency analysis without a compensation with respect to the sine wave by the nonlinear compensation circuit (6). Therefore, it is possible to provide a ΔΣ modulation digital-analogue converter which (i) suppresses generation of odd-order harmonics with a simple circuit arrangement, and therefore (ii) is excellent in SNR and THD+N.