Abstract:
An image reading apparatus includes a sensor section which includes a color line sensor which reads a color image and a monochrome line sensor which reads a monochrome image provided in parallel with and a specific distance away from the color line sensor, an input section which inputs a document image to the color line sensor and the monochrome line sensor, and a control section which, when reading an image from a document by use of the input section, starts the reading of an image by the color line sensor and the reading of an image by the monochrome line sensor with the same timing.
Abstract:
Image distortion is corrected in a color printer wherein print units for a plurality of colors are aligned to form a color image by superposing images formed by the print units. A quantity of image distortion is detected, and correction data of main scan address and subscan address are calculated and stored according to the detected image distortion for each main scan address. When input color image data are corrected, printing position is corrected in combination of address change with density interpolation. When the correction data exceeds the maximum correction range, the correction data are replaced by the maximum in the correction range to utilize the capability of the distortion correction of the printer. Further, in the image data correction, after the image data are converted to data having a smaller number of gradation levels, the data are delayed according to the serial arrangement of the print units. Then, the delayed data are converted again for printing.
Abstract:
An image processing device for processing an image read by an image scanner or similar image reading device is disclosed. The image processing device is capable of accurately detecting, without resorting to a range finding sensor or similar special sensing means, the bound portion of a spread book by recognizing the configuration of the bound portion out of a read image, and thereby accurately correcting the distortion of the portion of the image representative of the bound portion.
Abstract:
An image forming apparatus containing a divisional scanning type optical scanner. In the apparatus, if displacement of one line in a subscanning direction occurs in a joint of image formation areas, light sources are controlled so as to modulate and emit light beams based on image data of the scanning line shifted one line at the same point of time. If displacement of 0.5 pixels in a main scanning direction occurs in a joint of image formation areas, the emission start timing of one light beam is shifted by the scanning time as long as 0.5 pixels with respect to the emission start timing of the other light beam, thereby correcting the displacement amount in the main scanning direction.
Abstract:
An imaging system includes an illumination system and an optical module which are used together to scan media. The illumination system is composed of a tubular diffusion platen, a light source, and a reflector. The optical module comprises a rotating optical platen that rotates around an imaging assembly composed of a lens array, an optical element, a linear sensor array, an interconnect circuit, and a housing. The optical platen is transparent to allow the imaging assembly to capture and image of the transparent media and functions to accurately locate the transparent media in the optimal focus plane.
Abstract:
An image joining method for a scanner that scans and transfers image data to a terminal is provided. During scanning and data transfer, when the image data stored in a register is full, an image processor stops the scanning of a linear photodetector. Meanwhile, a matrix photodetector fetches and stores the image of a code strip. Then, the photodetectors are moved backward a distance larger than that being required to be accelerated forward when the scanner resumes scanning. After the data in the register being transferred and cleared, the linear photodetector resumes scanning at a normal moving speed. The code strip image is further fetched and compared with the stored one to get a joining point of scanned image data. By the joining point, the new and prior image data portions are joined and the scanning proceeds, and joined image data will not be overlapped or broken.
Abstract:
An image sensor controller and methods achieve faster image reading speeds by controlling the frequency of image sensor transfer clocks null1, null2 in accordance with the particular output period. Such an image sensor controller includes a drive controller that supplies to a transfer section of the image sensor transfer clocks null1, null2 whose clock frequency during dummy pixel output periods is faster than it is during an effective pixel output period, or whose clock frequency during non-reading pixel output periods is faster than it is during a reading pixel output period. A pattern selector selects among clock patterns in a table for setting null1, null2 according to the output periods of the image sensor. Even when the clock frequency of null1, null2 changes, a transfer clock ADCK signal can be supplied at a constant clock frequency to an A/D converter.
Abstract:
A segmented photosensor array for an image scanner has segments with imperfect alignment. During scanner manufacturing, photosensor segment alignment data, such as segment position offset and segment angle, is measured. The offset and angle are stored in non-volatile memory within the scanner. A position correction system uses the stored alignment data to correct position and angle values before being processed by a rectification system. Most pixels require simple geometry calculations. However, a more complex state machine is needed to handle the transition from one photosensor segment to the next. Correcting for segment position offset and angle errors enables a cost reduction for the sensor array and, in particular, reduces costs associated with scrap.
Abstract:
An image processor which corrects tilt of an input image without operator intervention. Projections of two partial images of an original are obtained at check points determined from input image information. A tilt angle of the original is obtained from a correction position of the projections of each partial area. The image is divided into belt-shaped small areas and shifted in accordance with the obtained tilt angle to form an image in which the tilt of the input image is corrected.
Abstract:
A color image is formed by a color printer by superposing images of a plurality of colors formed by a plurality of print units. A discrimination signal which represent character edge is received besides image data. The print positions of the print units are corrected according to image distortion detected by a sensor, and the image data are corrected according to corrected print position data. Further, the discrimination signal of character edge is corrected according to the detected image distortion. A color image is formed based on the corrected image data and the discrimination signal of character edge.