Abstract:
The invention relates to a zirconium phosphate in particles having sizes comprised within the range of from 1 to 100 .mu.m, a lamellar structure with interlayer distance, in the anhydrous state, comprised within the range of from 7.9 to 8.2 .ANG. and a surface area comprised within the range of from 9 to 20 m.sup.2 /g.The method consists in altering the lamellar structure of a zirconium phosphate with layer structure of alpha type by intercalating into it an organic substance containing a proton-acceptor group and water and by a treatment with ultrasounds, in regenerating the hydrogen form of said zirconium phosphate by an acid and in washing the same with diluted acids and/or water.
Abstract:
Ion exchange inorganic films made up of alpha-type or gamma-type layered structure insoluble acid salts of tetravalent metals or their salt forms, or their intercalated forms or their organic derivatives containing polar groups. A process for the preparation of said films.
Abstract:
A liquid containing radioactive ions is purified (decontaminated) by contacting the same with an inorganic ion exchange composition having ion exchange sites which can be occupied by the radioactive ions from the liquid. The ion exchange composition is a mixture of an ion exchange medium and an additive which is relatively inert to the ion exchange process and which is a sintering aid for the ion exchange medium designed to lower the sintering temperature of the ion exchange composition. The ion exchange composition may be disposed within a suitable container (e.g., cannister), e.g., made of 304L stainless steel or Inconel 601 and the ion exchange process may be carried out in such container. Alternatively, the ion exchange medium can be employed without being previously admixed with the additive. The additive, if desired, can be admixed at a later stage with the contaminated medium. Thereafter, the mixture may be sintered and disposed of in any desirable manner as by underground burial of the spent mixture within the container. Also, the container may be placed within a suitably designed furnace for carrying out the ion exchange process, sintering of the ion exchange composition and its safe disposal. Methods are also described for making a homogeneous mixture of the ion exchange medium and the additive which, for example, have a certain defined density and particle size relationship.
Abstract:
High density, ion exchange resins having excellent integrity are prepared from cross-linked, aromatic polymers which have been halogenated in the presence of an organic liquid having a sufficiently high dielectric constant to prevent substantial halogenation of the polymer backbone such as various organic nucleophiles having a free electron pair associated with a nonhalogen atom, e.g., ethanol or dimethylformamide. For example, a cross-linked polystyrene which has been brominated in methylene chloride containing a small amount of ethanol can subsequently be chloromethylated and aminated to form a high density anion exchange resin useful in removing anions from thick slurries such as those employed in uranium recovery.
Abstract:
A method for preparing a cementitious ion-exchange resin comprising treating cation- or anion-exchange resin particles having an effective diameter of from about 0.1 to about 1 mm with a material selected from the group consisting of polyacrylate emulsions, polyvinyl alcohol, and polyvinyl acetate, the material having a hydrophilic group, drying the treated ion exchange resin into a cementitious mass, and optionally reducing the particle size of the mass to provide cementitious ion exchange resin grains having an effective diameter of from about 2 to about 50 mm.
Abstract:
IMPROVED ION-EXCHANGE COMPOSITIONS AND THE PROCESS FOR PREPARATION THEREOF WHICH ARE SUITABLE FOR ION-EXCHANGE OR CHROMATOGRAPHIC SEPARATION OF CATION SOLUTES IN FUSED SALTS.
Abstract:
A preparation method for a titanium-based lithium ion exchanger includes the following steps: step 1, preparation of lithium metatitanate precursor, namely, uniformly mixing titanium source, lithium source and water in proportion by ball milling, adding an adjuvant, and allowing reaction by ultrasonic heating and stirring, so as to obtain the lithium metatitanate precursor powder; step 2, preparation of lithium metatitanate powder, including spray drying and microwave calcination with the lithium metatitanate precursor to obtain the lithium metatitanate powder; and step 3, elution and replacement, namely, leaching out Li with an eluent to obtain lithium ion exchanger. The preparation method is a solid-liquid phase contact reaction so that the ratio of raw materials can be accurately controlled. The synthesis reaction is strengthened by ultrasound. Titanium is controlled at a relatively excessive proportion to prepare the lithium metatitanate powder with high porosity and good filterability.
Abstract:
Contaminate-sequestering coatings including a network of hydrolyzed silane compounds including a plurality of thiol functional groups, a plurality of fluorinated functionalities, or both are provided. The contaminate-sequestering coatings may sequester one or more per- and polyfluoroalkyl substances (PFAS), heavy metals, biological species or any combination thereof. Methods of functionalizing a substrate surface with contaminate-sequestering functionalities that sequester one or more PFAS, heavy metals, or both are also provided. Methods of removing contaminants from contaminate-containing liquids, and devices including the contaminate-sequestering coatings are also provided.