Abstract:
A tire having a visible sidewall of a rubber composition containing a combination of: (A) a liquid ethylene/butylene copolymer having a terminal hydroxyl group on one end of the copolymer and either a partially hydrogenated polyisoprene block containing olefinic double bonds, or an epoxidized polyisoprene block containing olefinic double bonds, on the other end of the copolymer, (B) cis 1,4-polybutadiene rubber, (C) a brominated copolymer of isobutylene and para-methylstyrene, and (D) a minor amount of at least one conjugated diene-based rubber, preferably cis 1,4-polyisoprene. In such manner, it is considered herein that such liquid polymers are functional liquid polymers via the associated terminal hydroxyl group on one end of the copolymer and the modified polyisoprene blocks on the other end. In another aspect, the liquid copolymers are seen herein to act as processing aids for the rubber composition followed by becoming an integral part of the polymer network upon sulfur curing the resulting rubber composition. Therefore, a tire having a sulfur cured, visible sidewall rubber composition is also provided. In a further aspect, the rubber composition may be reinforced with a reinforcing filler as carbon black or as a combination of carbon black and silica together with a coupling agent.
Abstract:
Tire comprising a carcass reinforcement of at least one ply of reinforcing elements parallel to one another within each ply and making with the circumferential direction an angle &agr; such that 60°
Abstract:
A pneumatic tire comprises a tread portion, a pair of sidewall portions, a pair of bead portions, a radial carcass extending between a pair of bead cores and having a turnup portion, a bead filler rubber, and one or more reinforcing cord layers arranged at a side face zone ranging from the bead portion to the sidewall portion, in which the reinforcing cord layer is a layer of one or more rubberized cords spirally wound about an axial line of the tire and has an inner end in a radial direction of the tire between a position located outward from an outer periphery of the bead core in the radial direction and a position located inward from a tapered end of the bead filler rubber in the radial direction.
Abstract:
An aqueous coating composition which can be applied to a cured rubber surface, such as the white sidewall, colored sidewall, raised white lettering or raised colored lettering of a tire, to provide a protective coating against staining and scuffing. The composition includes (a) polyvinyl alcohol, (b) ethylene-vinyl acetate copolymer, and (c) one or both of (i) a silicon emulsion in an amount sufficient to provide increased scuff resistance to a coating prepared from the composition, and (ii) a thickening agent of a type and in an amount effective to render the composition shear-thinning.
Abstract:
Pressure sensitive labels, which desirably are coated with fluorescent ink having a non-stick pull tab end portion are utilized to indicate a substantially maximum or minimum radial distance of a tire tread and to indicate, respectively, a substantial minimum or maximum radial distance of a matingly engagable tire rim. The tire is applied to the rim with the labels in substantial radial alignment so as to reduce the out of round portion of the tire tread.
Abstract:
Runflat tire construction is optimized for tire ride comfort by reducing tire wall gauges in the tread-shoulder-to-upper-sidewall transition region and compensating with supporting sidewalls that constantly increase in thickness (gauge) from the transition region to a bead/flange area where a chafer extends above a wheel rim flange. Thus the bead and lower sidewall area are reinforced to a maximum and the shoulder area gets only the minimum stiffness necessary to achieve the required runflat performance. Within the context of wall gauges that constantly increase from the transition region to the bead/flange area, a mid-sidewall gauge ratio MSGR, being equal to a mid-sidewall gauge G2 divided by a shoulder gauge G1, is approximately within the range of 1.1 to 1.4, preferably approximately equal to 1.3; and a bead/flange gauge ratio BFGR, being equal to a bead/flange gauge G3 divided by a shoulder gauge G1, is approximately within the range of 1.5 to 1.8, preferably approximately equal to 1.7.
Abstract:
A radial ply tire (10) has a floating reinforcement ply on the inside shoulder/sidewall region of the tire. The reinforcement ply comprises ply rubber having a gauge sufficient to delocalize flexing in the tire shoulder/sidewall region, and in one embodiment may be reinforced with 0.50 to 6.0 phr fibers. Depending on the type of tire in which the reinforcement ply is used, the reinforcement has a total gauge of 0.005 inch to 0.175 inch (0.127 to 4.445 mm). When fiber is used in the illustrated embodiment, the fiber is oriented circumferentially in the tire.
Abstract:
Disclosed is a pneumatic tire wherein a side portion is constituted by an inner layer, made of a compound showing tan &dgr;(20° C.) 0.25 to 1.00, disposed on the outside of a carcass layer, and an outer layer, made of a compound showing tan &dgr;(20° C.) 0.15 to 0.20, disposed on the outside of an inner layer.
Abstract:
The invention relates to a tire having a sidewall component of an EPDM-based rubber composition prepared with specified precipitated silica reinforcement and an organosilane disulfide material. In one aspect, such rubber composition may be exclusive of carbon black and may thereby be of color other than black.
Abstract:
A fluorescent label can be used to identify the location of variations, e.g. radial variations, in a pneumatic tire so the tire can be precisely mixed and matched with other components such as tire rims which may have compensating variations. The fluorescent label desirably includes a release backing, a pressure sensitive adhesive to bind said label to a tire, a nontransparent face sheet that reflects a substantial portion of incident light back towards its source, transparent top layer which contains one or more fluorescent dye(s) disproportionately present in the surface portion of the layer and preferably in the layer nearest the adhesive side. The location of the largest portion of the fluorescent dye is important as commercial labels with the dye on the exterior surface suffer from fluorescent reading losses apparently due to migration of mobile molecules from other tires stored in contact with the label's exterior surface.