Ceramic liner and method of forming

    公开(公告)号:US10295260B2

    公开(公告)日:2019-05-21

    申请号:US15787573

    申请日:2017-10-18

    摘要: A ceramic liner can include a monolithic body having a surface portion and a bulk portion. The surface portion can have a thickness less than the total thickness of the monolithic body. The monolithic body can include an amorphous phase. The amorphous phase can be discontinuous. At least one member of the discontinuous phase can be embedded in the surface portion. The bulk portion can be substantially free of the amorphous phase. A method of forming a ceramic liner can include providing a furnace with a coating and a bulk material of the ceramic liner and heating the bulk material and the coating. In an embodiment, a coated lining form can be used to provide the coating. In a particular embodiment, the coating can be transferred to the bulk material from the coated lining form.

    Refractories and use thereof
    15.
    发明授权

    公开(公告)号:US10227260B2

    公开(公告)日:2019-03-12

    申请号:US15538429

    申请日:2015-11-30

    摘要: A refractory has the form of a dry, mineral batch of fire-resistant mineral materials combined in such a way that refractories which are long-term resistant to fayalite-containing slags, sulfidic melts (mattes), sulfates and non-ferrous metal melts and are used for refractory linings in industrial non-ferrous metal melting furnaces can be manufactured. The refractory at least contains: —at least one coarse-grained magnesia raw material as the main component; —magnesia (MgO) meal; —at least one fire-resistant reagent which, during the melting process, acts (in situ) in a reducing manner on non-ferrous metal oxide melts and/or non-ferrous metal iron oxide melts and converts same into non-ferrous metal melts.

    MONOLITHIC CERAMIC GAS DISTRIBUTION PLATE
    16.
    发明申请

    公开(公告)号:US20190032211A1

    公开(公告)日:2019-01-31

    申请号:US15662869

    申请日:2017-07-28

    摘要: A monolithic ceramic gas distribution plate for use in a process chamber wherein semiconductor substrates can be processed includes a monolithic ceramic body having an upper surface, a lower surface, and an outer cylindrical surface extending between the upper surface and the lower surface. The lower surface includes first gas outlets at uniformly spaced apart first locations and the first gas outlets are in fluid communication with first gas inlets in the upper surface by a first set of vertically extending through holes connecting the first gas inlets with the first gas outlets. The lower surface also includes second gas outlets at uniformly spaced second locations adjacent the first locations and the second gas outlets are in fluid communication with an inner plenum in the monolithic ceramic body by a second set of vertically extending through holes connecting the second gas outlets with the inner plenum. The inner plenum is in in fluid communication with a second gas inlet located in a central portion of the upper surface and the inner plenum is defined by an inner upper wall, an inner lower wall, an inner outer wall, and a set of pillars extending between the inner upper wall and the inner lower wall. Each through hole of the first set of vertically extending through holes passes through a respective one of the pillars to isolate the first and second gases.

    Plugged honeycomb structure
    18.
    发明授权

    公开(公告)号:US10040017B2

    公开(公告)日:2018-08-07

    申请号:US15070372

    申请日:2016-03-15

    发明人: Yoshio Kikuchi

    摘要: A plugged honeycomb structure includes: a pillar-shaped honeycomb substrate having a partition wall base material that defines a plurality of cells serving as a through channel of fluid; a plugging portion disposed at open ends of predetermined cells at an inflow-side end face of fluid and at open ends of residual cells at an outflow-side end face of fluid; and a porous trapping layer disposed at least at a surface of the partition wall base material of the residual cells. The partition wall base material is formed by a base material porous body including cordierite as a main phase, the trapping layer is formed by a trapping layer porous body including cordierite as a main phase, and a part of the trapping layer penetrating into pores formed at the partition wall base material has a thickness of 0 to 20 μm.