Abstract:
Provided is a survey system capable of more highly accurately obtaining a product of a three-dimensional survey. A survey system includes a mobile body, a scanner including an emitting unit, a light receiving unit, a distance measuring unit, a first optical axis deflecting unit disposed on an optical axis of the distance measuring light and configured to deflect a distance measuring light, a second optical axis deflecting unit disposed on a light receiving optical axis of the reflected distance measuring light and configured to deflect a reflected distance measuring light at the same angle in the same direction as those of the first optical axis deflecting unit, and an emitting direction detecting unit to detect deflection angles and directions of the first and the second optical axis deflecting units, a posture detecting device of the scanner, and a position measuring device of the scanner.
Abstract:
Read electrodes are provided to drain signal charge of pixels from photoelectric conversion units provided in the pixels separately to a vertical transfer unit. During a first exposure period during which an object is illuminated with infrared light, signal charge obtained from a first pixel, and signal charge obtained from a second pixel adjacent to the first pixel, are added together in the vertical transfer unit to produce first signal charge. During a second exposure period during which the object is not illuminated with infrared light, signal charge obtained from the first pixel, and signal charge obtained from the second pixel adjacent to the first pixel, are transferred without being added to the first signal charge in the vertical transfer unit, and are added together in another packet to produce second signal charge.
Abstract:
A graphics-aided geodesic device is provided. The device may include a display, camera, distance meter, GNSS (Global Navigation Satellite System, including GPS, GLONASS, and Galileo) receiver and antenna, and horizon sensors. Data from the camera and horizon sensors may be displayed to assist the user in positioning the device over a point of interest. In one example, the distance meter may be used to determine the position of the point of interest. In another example, images of the point of interest taken from multiple locations may be used to determine the position of the point of interest.
Abstract:
A method is directed to providing a custom message set within a vehicle message service system. The method includes receiving at least one vehicle message service request, determining at least one set of vehicle parameters based on the at least one received vehicle message service request, requesting at least one vehicle message for each of the at least one set of vehicle parameters from a database, and generating the custom message set responsive to the vehicle messages. The method may further include transmitting the generated custom message set to a vehicle client. The step of generating the custom message set responsive to the received vehicle parameters may include receiving a vehicle message for each of the at least one set of vehicle parameters from the database and producing an object including the vehicle messages.
Abstract:
An object locating system detects the presence of an object as it passes through two consecutive planar fields of view. Two pairs of optical sensor arrays with multiple, directed, pixel detectors observe the object from two angles as the object passes through each consecutive field of view. The locations of penetrations of the respective fields of view are calculated by triangulation. Using this data, the known location of the take-off point and/or the delay between penetrations, the trajectory of the object in time and space is calculated. Applications include projecting the range of a driven golf ball, measuring the respective arriving and departing velocities of a hit baseball, and determining the trajectory and origin of an arriving projectile, as in the case of the threat to a military vehicle.
Abstract:
Method of surveying for the compilation of digital files of detailed, three-dimensional, topographic data, consisting of co-ordinates of points in the terrain and the corresponding topographic point codes, line codes and plane codes 1. From at least three successive station positions, either photographically or electronically panoramic recordings are made of the terrain surrounding each station position. Each recording contains the entire horizon, from the zenith to far under the horizon, so that a sequence of recordings are obtained. Compared to the local horizon-plane, the spatial directions are determined of points in the terrain to-be-defined using measurement means and calculation means, which allow the determination with high precision, of the distance between the center of the recording and points to-be-defined in co-ordinates and of the direction of the line between the center of the recording and the point to-be-defined in relation to a fixed orientation taken at random in that recording. Special measuring instruments are used.
Abstract:
A method and a device for a photogrammetric measurement of measurement features are provided. The device has a multi-camera with at least two individual cameras. A field of vision of at least two of the individual cameras partly overlaps. The method includes capturing images of the measurement features with at least two individual cameras of the multi-camera at different measurement positions, analyzing the captured images of one measurement position and determining 3D identification features of measurement features in the three-dimensional space, the measurement features being located in the overlap region of the individual cameras, using the plurality of captured images for the overlap region and the respective location of each measurement feature in the captured images, identifying the measurement features in the captured images captured from different measurement positions with matching 3D identification features, and calculating the 3D coordinates of the identified measurement features using the plurality of captured images.
Abstract:
The invention relates to computer-implemented method for the 3D reconstruction of a ground surface area by stereophotogrammetry, comprising the steps of:
determining corrected Rational Polynomial Camera, RPC, models by performing bundle adjustment (BA) of original RPC models each provided with an image of a set of images of the ground surface area acquired by a remote imaging sensor and each associated to a corresponding original projection function ({Pm}) from a 3D object space to a 2D image space, wherein determining the corrected RPC models comprises determining corrected projection functions ({Pmcor}) from the 3D object space to the 2D image space; and determining (PC) a 3D point cloud representative (3DPC) of the ground surface area by triangulation, based on the corrected RPC models, of stereo correspondences within images of the set of images.
In accordance with the invention, determining the corrected projection functions comprises determining, for each of the original projection function, a 3D corrective rotation around a remote imaging sensor center to be applied in the 3D space before performing the original projection function.
Abstract:
The present disclosure relates to a tracking system for tracking the position and/or orientation of an object in an environment, the tracking system including: at least one camera mounted to the object; a plurality of spaced apart targets, at least some of said targets viewable by the at least one camera; and, one or more electronic processing devices configured to: determine target position data indicative of the relative spatial position of the targets; receive image data indicative of an image from the at least one camera, said image including at least some of the targets; process the image data to: identify one or more targets in the image; determine pixel array coordinates corresponding to a position of the one or more targets in the image; and, use the processed image data to determine the position and/or orientation of the object by triangulation.
Abstract:
An imaging device having an optical system including a free-form surface lens with rotationally asymmetric shape that forms an image on an imaging surface such that a resolution of a first region in front of the predetermined region is higher than a resolution of a second region at a lateral side of the predetermined region. The free-form surface lens has a shape that forms the image such that a resolution of a portion at a predetermined first distance away from a center of the first region in a vertical direction is different from a resolution of a portion at the predetermined first distance away from the center of the first region in a horizontal direction, the vertical direction being orthogonal to the horizontal direction, in the imaging element, in which the first region and the second region are aligned.