Abstract:
A process of producing a plasma display panel has the steps of: forming a photosensitive paste composition layer on a carrier film; transferring the photosensitive paste composition layer onto a substrate; exposing the photosensitive paste composition layer; removing the carrier film; and baking the exposed composition layer to fabricate at least one of barrier ribs, electrodes, resistors, dielectrics, phosphors, a color filter array, and a black matrix.
Abstract:
The present invention relates to a plasma display panel and, more particularly, to a PDP in which surface separation lines are not generated. According to an embodiment of the present invention, a plasma display panel having a dielectric layer, which is formed by laminating a green sheet and the panel, wherein the green sheet comprises a glass powder, a dispersing agent, a binder, a plasticizer and a surfactant. Therefore, if a panel having a dielectric layer is fabricated by using a green sheet according to the present invention, separation lines are not generated. Accordingly, the present invention is advantageous in that it needs not additional equipment and process for preventing generation of separation lines, and it can reduce a manufacture time and cost.
Abstract:
Almost only choice by a secondary electron emission layer/protection layer covering the dielectric layer of an AC type PDP has been magnesium oxide (MgO) that is unstable during the production process and difficult to form, thus posing a serious production problem. An AC type PDP constructed such that, instead of covering the surface of a dielectric layer (3) with a dielectric material such as MgO, an insular electrode (4) is made by forming a conductive material such as nickel, aluminum, magnesium and lanthanum hexaboride into an insular shape, and the insular electrode (4) is allowed to capacity-couple with a lower-layer bus electrode (9) by means of an electrostatic capacity formed by a dielectric layer (3) to operate the insular electrode (4) as a sustained electrode.
Abstract:
A plasma display panel including front and rear substrates facing each other to form a discharge space therebetween; a plurality of address electrodes on an upper surface of the rear substrate; a first dielectric layer covering the address electrodes on the upper surface of the rear substrate; partitions provided on a upper surface of the first dielectric layer to partition the discharge space; a plurality of second dielectric layers provided on a lower surface of the front substrate and extending in a direction perpendicular to the address electrodes; first and second sustaining electrodes provided to be slanted to face each other on both sides of each of the second dielectric layers; a third dielectric layer provided on a lower surface of the second dielectric layers to cover the first and second sustaining electrodes; and a protective layer provided on a lower surface of the third dielectric layer.
Abstract:
A display apparatus which sequentially applies a scanning pulse to one row electrode of the row electrode pair while applying a pixel data pulse corresponding to the pixel data to the column electrodes one display line by one display line, simultaneously with the scanning pulse, to selectively produce an address discharge in the second discharge cell in the address period, applies a sustain pulse to the row electrode pairs in the sustain period, and produces a reset discharge in the same discharge current direction as the address discharge between one row electrode of the row electrode pair and the column electrode in the second discharge cell immediately before the address period of at least the first sub-field of the one-field display period, and a method of driving the display panel.
Abstract:
The present invention relates to a plasma display panel in which the time necessary for addressing is shortened, and a method and apparatus for driving the PDP. A plasma display panel according to a first embodiment of the present invention includes an upper substrate in which scan electrodes and sustain electrodes are formed, and a lower substrate in which an address electrode, a horizontal diaphragm and a vertical diaphragm are formed, wherein the horizontal diaphragms and the vertical diaphragms intersect one another to form a plurality of discharge cells, and the discharge cell includes a main discharge cell on which phosphors are coated, and a sub discharge cell on which magnesium oxide is coated. According to the first embodiment of the present invention, first horizontal diaphragms and second horizontal diaphragms are provided to form main discharge cells and sub discharge cells. A priming discharge is generated and an address discharge is generated within the sub discharge cells on which magnesium oxide is coated. An address discharge occurs rapidly.
Abstract:
A plasma display panel (PDP) and its fabrication method are disclosed. The PDP includes a dielectric transfer film containing a ceramic pigment instead of a conventional upper dielectric layer, so that a color purity and a contrast ratio can be increased, the thickness of the dielectric thin film can be uniform, and a voltage margin and discharging can be uniform.
Abstract:
A plasma display includes a display panel and a driving circuit for driving the display panel. A space for at least one color, of spaces between barrier ribs for defining discharge spaces for red, green and blue colors of the display panel is different from the spaces for other colors.
Abstract:
A first electrode group and a second electrode group each being formed by planarly arraying a plurality of electrodes on a common substrate are arrayed such that the electrodes cross over through an insulating layer. A common discharge electrode portion is arranged between each pair of adjacent electrodes of the first electrode group to be opposite to the pair of electrodes, and plasma discharge portions are formed at opposing portions of the respective discharge electrode portions and the opposite portions of each of the pairs of electrodes opposite to the discharge electrode portions. Thus, a problem of decreases in width of electrodes and inter-electrode interval caused by an increase in definition in a planar-type plasma discharge display device is solved, and at the same time, without using a complex signal processing circuit, the display drive of the planar-type plasma discharge display device and a high-luminance display drive are performed without causing any image degradation.
Abstract:
When two facing electrodes forming a first set are spaced at a large interval, a first electrode in the first set is prone to erroneously discharge with a second electrode forming a second set separated from the first set. A plasma display panel comprises: a first glass substrate and a second glass substrate facing each other; a plurality of sets of discharge sustain electrodes, each set including one common electrode and two independent electrodes on both sides of the common electrode provided on a surface of the first glass substrate that faces the second glass substrate, the common electrode and the two independent electrodes extending in parallel with each other; a dielectric layer coating the plurality of sets of discharge sustain electrodes; a plurality of address electrodes provided in parallel in a direction perpendicular to the common electrodes on a surface of the second glass substrate that faces the first glass substrate with a space interposed between the dielectric layer and the address electrodes; partitions provided between adjacent ones of the address electrodes between the first and second glass substrates; a phosphor coating the partitions; and first insulating parts provided in positions facing the common electrodes with the dielectric layer interposed therebetween.