Abstract:
Various embodiments provide for systems and methods for signal conversion of one modulated signal to another modulated signal using demodulation and then re-modulation. According to some embodiments, a signal receiving system may comprise an I/Q demodulator that demodulates a first modulated signal to an in-phase (“I”) signal and a quadrature (“Q”) signal, an I/Q signal adjustor that adaptively adjusts the Q signal to increase the signal-to-noise ratio (SNR) of a transitory signal that is based on a second modulated signal, and an I/Q modulator that modulates the I signal and the adjusted Q signal to the second modulated signal. To increase the SNR, the Q signal may be adjusted based on a calculated error determined for the transitory signal during demodulation by a demodulator downstream from the I/Q modulator.
Abstract:
A system may include at least one antenna for receiving a first receive signal having a first signal diversity property and a second receive signal having a second signal diversity property. A first signal path may include a first frequency converter for downconverting the first receive signal to a first intermediate frequency signal having a first intermediate frequency. A second signal path may include a second frequency converter for downconverting the second receive signal to a second intermediate frequency signal having a second intermediate frequency. A transducer module may route the first receive signal to the first signal path, and route the second receive signal to the second signal path. A first N-plexer may select the first intermediate frequency signal or the second intermediate frequency signal for transmission to a cable, and to provide a data signal based on a selected intermediate frequency signal to the cable.
Abstract:
Various embodiments described herein provide systems and methods for improved performance for power amplifiers, particularly GaN power amplifiers. According to some embodiments, a power amplifier (e.g., GaN power amplifier) utilizes an adaptive closed-loop control of the drain current of the power amplifier to achieve improved performance for the power amplifier. Additionally, for some embodiments, use of the adaptive closed-loop control of the drain current of the power amplifier depends on the power region in which the power amplifier is operating (e.g., depends on the radio frequency power region).
Abstract:
An exemplary system may comprise a first and second device and a first and second power splitter coupled to a single cable. The first device may be configured to receive a first noise signal of a first polarization, and to adaptively cancel, based on the first noise signal, first noise from the noisy signal associated with an orthogonal polarization. The second device may be configured to receive a second noise signal of a second polarization, and to adaptively cancel second noise from the noisy signal associated with an orthogonal polarization based on the second noise signal. The first power splitter may be configured to receive the first noise signal from the single cable and provide the first noise signal to the first device. The second power splitter may be configured to receive the second noise signal from the single cable and provide the second noise signal to the second device.
Abstract:
Systems and methods for combining signals from multiple active wireless transmitters are discussed herein. An exemplary system comprises a radio enclosure, a first transmitting RFU, a second transmitting RFU, and a combiner. The first transmitting RFU may be configured to receive a signal, upconvert the signal, compare a phase of the upconverted signal to a predetermined phase value, and adjust the phase of the signal based on the comparison to provide a first phase-adjusted upconverted signal. The second transmitting RFU may be configured to receive the signal, upconvert the signal, compare a phase of the upconverted signal to the predetermined phase value, and adjust the phase of the signal based on the comparison to provide a second phase-adjusted upconverted signal. The coupler may be configured to combine the first and second phase-adjusted upconverted signals to create an output signal and provide the output signal to an antenna for transmission.
Abstract:
Various embodiments are directed toward systems and method for manufacturing low cost passive waveguide components. For example, various embodiments relate to low cost manufacturing of passive waveguide components, including without limitation, waveguide filters, waveguide diplexers, waveguide multiplexers, waveguide bends, waveguide transitions, waveguide spacers, and antenna adapters. Some embodiments comprise manufacturing a passive waveguide component by creating a non-conductive structure using a low cost fabrication technology, such as injection molding or three-dimensional (3D) printing, and then forming a conductive layer over the non-conductive structure such that the conductive layer creates an electrical feature of the passive waveguide component.
Abstract:
A first layer one link aggregation master comprises a first port coupled to receive customer traffic; a first channel; a second channel; an aggregation engine coupled to the first and second channels; a first switch circuit coupled to the first port and to the first channel, and configured to communicate the customer traffic from the first port over the first channel to the aggregation engine, the aggregation engine including a splitter circuit configured to use layer one information to segment at least a portion of the customer traffic into a first virtual container and a second virtual container, the aggregation engine further including an encapsulation circuit configured to encapsulate the second virtual container using Ethernet standards for transport over the second channel; a radio access card configured to generate an air frame based on the first virtual container for wireless transmission over a first wireless link of a link aggregation group to the receiver; and a second switch circuit coupled to the second channel, and configured to communicate the Ethernet-encapsulated second virtual container over an Ethernet cable to a slave for wireless transmission over a second wireless link of the link aggregation group to the receiver.
Abstract:
Rapid failure detection and recovery in wireless communication networks is needed in order to meet, among other things, carrier class Ethernet transport channel standards. Thus, resilient wireless packet communications is provided using a hardware-assisted rapid transport channel failure detection algorithm and a Gigabit Ethernet data access card with an engine configured accordingly. In networks with various topologies, this is provided in combination with their existing protocols, such as rapid spanning tree and link aggregation protocols, respectively.
Abstract:
An exemplary system comprises a linearizer, a power amplifier, and a feedback block. The linearizer may be configured to use a predistortion control signal to add predistortion to a receive signal to generate a predistorted signal. The power amplifier may be configured to amplify power of the predistorted signal to generate a first amplified signal. The power amplifier may also add high side and low side amplifier distortion to the predistorted signal. The high side and low side amplifier distortion may cancel at least a portion of the predistortion. The feedback block may be configured to capture a feedback signal based on a previous amplified signal from the power amplifier, to determine high side and low side distortion of the captured feedback signal, and to generate the predistortion control signal based on the determined high side and low side distortion.