Abstract:
The present invention disclosed an electrical dual control switch device and the method of controlling thereof. By applying two electrical switches with connection method of conventional mechanical type dual control switch device. The operating status of the electrical switch could be detected by the AC waveform of the power transmission line of the other electrical switch. Therefore, the objection of electrical controlling the loading device will be realized. The loading device could be remotely control and the usage of the power could also effectively calculate. Further the present invention could also protected against overload, work with touch device and sets a timer for automatically shut down the power.
Abstract:
An output buffer with an offset cancellation structure for an LCD source driver includes an operational amplifier, for driving an output signal of the output buffer according to a data signal from a data input terminal of the output buffer; a reference voltage generator, for generating a reference voltage and inputting the reference voltage to the operational amplifier; and a sampling capacitor, coupled between a second input terminal of the operational amplifier and the data input terminal of the output buffer in a first phase, and coupled between the second input terminal of the operational amplifier and an output terminal of the operational amplifier in a second phase, wherein the second input terminal of the operational amplifier is further coupled to the output terminal of the operational amplifier in the first phase. The output signal outputs the data signal where the offset voltage is cancelled in the second phase.
Abstract:
A driving module for a display device includes a first transistor, comprising a gate coupled to a first node, a drain coupled to an output end, and a source coupled to a first positive voltage source; a second transistor, comprising a gate coupled to a second node, a drain coupled to output end, and a source coupled to a first negative voltage source; and a voltage generating unit, coupled to an input end, a second positive voltage source and a second negative voltage source for generating a first voltage at first node and a second voltage at second node according to a control signal from input end; wherein voltage difference between a first positive voltage of first positive voltage source and first voltage is smaller than first threshold and voltage difference between a first negative voltage of first negative voltage source and second voltage is smaller than second threshold.
Abstract:
A circuit buffer for outputting a voltage signal having a magnitude greater than a withstand voltage of any circuit element in the circuit buffer includes a first transistor and a second transistor. The first transistor includes a first terminal and a second terminal electrically connected to an input terminal and an output terminal of the circuit buffer respectively, a third terminal electrically connected to a first power supply terminal, and a fourth terminal electrically connected to the third terminal of the first transistor. The second transistor includes a first terminal and a second terminal electrically connected to the input terminal and the output terminal of the circuit buffer respectively, a third terminal electrically connected to a second power supply terminal, and a fourth terminal electrically connected to the third terminal of the second transistor. Voltages of the first and second power supply terminal are switched between two different levels, respectively.
Abstract:
A calibration method for a capacitive sensing device is disclosed. The capacitive sensing device is capable of operating in a self-sensing mode or a mutual-sensing mode. The calibration method includes detecting a capacitance change of a panel in the self-sensing mode to generate a self-sensing output signal, detecting a capacitance change of the panel in the mutual-sensing mode to generate a mutual-sensing output signal, calculating a self-sensing difference between the self-sensing output signal and a self-sensing static parameter, and calibrating the mutual-sensing output signal according to the mutual-sensing output signal and the self-sensing difference.
Abstract:
An electronic element for an electronic apparatus includes a substrate; a bump, disposed on the substrate for electrically connecting the electronic apparatus; and at least one under bump metal layer, disposed between the bump and the substrate for the bump to be attached to the substrate; wherein the UBM layer forms a breach structure.
Abstract:
A power supply system includes a charging pump module including a plurality of charging pump circuits, wherein each charging pump circuit includes a plurality of transistor switches and is coupled to a flying capacitor set in parallel and the flying capacitor set includes a plurality of flying capacitor units; and a control module for generating a plurality of control signals to switch a connection relationships of the plurality of flying capacitor units; wherein the plurality of charging pump circuits charges the plurality of flying capacitor units and the connection relationships of the plurality of flying capacitor units determines a generation of a charging voltage; an amplifying module for utilizing the charging voltage as a voltage source to generate an amplifying voltage; and a load module for processing a dynamic charging operation in a predetermined period according to the amplifying voltage, to make the load module achieve a predetermined voltage.
Abstract:
An analog-to-digital converting device includes a converting module, for sampling an analog input voltage according to a plurality of sampling signals to generate a comparing voltage and generating a comparing signal according to the comparing voltage, wherein the converting module comprises a plurality of capacitors and each of the plurality of capacitors couples between one of the plurality sampling signals and the comparing voltage; a control module, for adjusting the plurality of sampling signals according to the comparing signal, to generate a digital signal corresponding to the analog input voltage, wherein a plurality of bits of the digital signal are respectively corresponding to the capacitances of the plurality of capacitors; and a calibration module, for adjusting the capacitances of the plurality of capacitors according to the digital signal.
Abstract:
A circuit buffer for outputting a voltage signal having a magnitude greater than a withstand voltage of any circuit element in the circuit buffer includes a first transistor and a second transistor. The first transistor includes a first terminal and a second terminal electrically connected to an input terminal and an output terminal of the circuit buffer respectively, a third terminal electrically connected to a first power supply terminal, and a fourth terminal electrically connected to the third terminal of the first transistor. The second transistor includes a first terminal and a second terminal electrically connected to the input terminal and the output terminal of the circuit buffer respectively, a third terminal electrically connected to a second power supply terminal, and a fourth terminal electrically connected to the third terminal of the second transistor. Voltages of the first and second power supply terminal are switched between two different levels, respectively.
Abstract:
A gate driving circuit for providing a scan signal to a LCD panel is disclosed. The gate driving circuit includes at least one positive level shifter, at least one negative level shifter, a pair of P-type transistor and an N-type transistor. The positive level shifter is utilized for shifting up agate control signal to generate a positive control signal. The negative level shifter is utilized for shifting down the gate control signal to generate a negative control signal. The pair of transistors is utilized for outputting a positive power voltage or a negative power voltage as the scan signal according to the positive control signal and the negative control signal. The positive power voltage minus the positive control signal is less than six volts. The negative control signal minus the negative power voltage is less than six volts.