Abstract:
In one aspect, a distributed coherent transmission system enables transmissions from separate wireless transmitters with independent frequency or clock references to emulate a system where all the transmitters share a common frequency or clock reference. Differences in frequency and/or phase between transmitters are addressed by suitably precoding signals before modulation at one or more of the transmitters based on a synchronizing transmission from one of the transmitters (e.g., a master transmitter) received at a corresponding receiver sharing the frequency or clock reference with each of the one or more transmitters. Such a distributed coherent transmission system can allow N single-antenna transmitters with independent frequency or clock references to emulate a single N-antenna Multi Input Multi Output (MIMO) transmitter, or implement schemes such as distributed superposition coding or lattice codes that require coherence across separate transmitters.
Abstract:
Techniques are described for facilitating access of computing system users to restricted or other functionality, such as internal functionality of a business or other organization. The functionality access may be facilitated by an access provider system that executes on a client computing system of an authorized user, such as a program operating in conjunction with another presentation program that presents publicly available information by modifying interactions available to the user when using the presentation program or otherwise providing additional information to the user. In some situations, the additional information is provided by temporarily modifying the information being presented by the presentation program, such as to provide additional information that is related to functionality corresponding to a subject area of the currently presented information and/or corresponding to an aspect of the currently presented information that is indicated by the user.
Abstract:
A multi-die semiconductor device is disclosed. The device may include one or more first-sized die on a substrate and one or more second-sized die affixed over the one or more first-sized die. The second-sized die may have a larger footprint than the first-sized die. An internal molding compound may be provided on the substrate having a footprint the same size as the second-sized die. The second-sized die may be supported on the internal molding compound. Thereafter, the first and second-sized die and the internal molding compound may be encapsulated in an external molding compound.
Abstract:
A computer-implemented method for monetizing future location of users includes identifying indicator(s) retrieved from log data or an electronic declaration that indicate a possibility that a user will be at a specific location in the future; generating a probability that the user will be at the specific location in the future based on the indicator(s); and charging an advertiser a cost for an impression to which to serve a location-specific advertisement targeted to the user, the cost charged being greater when the probability is greater that the user will be at the specific location in the future. The method may be extended to targeting a group of users that expect to be at the same location at the future point in time. Monetization of future locations may depend on the quality and/or quantity of the log data and declarations of future locations and on a number of users in a group of users if monetized according to the group.
Abstract:
A multi-walled tubing assembly includes an outer corrugated tube and an inner tube received in the outer tube, and may receive an insert. The inner tube is made from a resilient material. The outer tube is structurally rigid. The insert may be plain and used in conjunction with one or more adhesives. The insert may include a section with barbs or teeth which, once inserted into the inner tube, engage with the corrugations of the outer tube. Some embodiments result in a good seal and mechanically fix the tubing assembly.
Abstract:
The present invention relates to novel polymorph of Ceftiofur sodium as a crystalline product. The present invention also provides a process for the preparation of crystalline Ceftiofur sodium of formula (I).
Abstract:
Disclosed is a method, system, and program for providing access to spatial data. A request for data is received. Enterprise and third party data are integrated. The integrated data is processed. Spatially referenced results are generated using the processed data. The spatially referenced results are returned in response to the request.
Abstract:
Techniques are described that track the lines and pixels in a frame buffer in the host system that are being modified and transmit these modified scan lines and modified pixel locations to the self refresh display instead of entire contents of the frame buffer. The graphics adapter informs the self refresh display of the modified scan lines or pixel information and then sends the pixel data over the communications channel to the display. Custom codes can be used to identify and transmit modified scan lines and pixels to the self refresh display logic.
Abstract:
The disclosure provides systems and methods of use of an HVAC graphical interface dashboard. In various embodiments, the dashboard includes a weather tab, wherein invoking the weather tab advances to a weather screen. The dashboard also includes an indoor humidity tab. A programs tab and a home tab are also provided. The indoor humidity tab can further be used to set current indoor humidity setpoints.
Abstract:
A method for bonding a porous flexible membrane to a rigid material is disclosed. In some embodiments, the method includes applying, at a bonding site of the porous membrane, a pre-treatment solvent solution, drying the bonding site of the porous membrane, applying, at a bonding site of the rigid structure, a first solvent that is capable of dissolving a surface of the rigid material, applying, at the bonding site of the porous membrane, a second solvent that is capable of dissolving the polymeric residue material dissolved in the pre-treatment solvent solution, and pressing the porous membrane to the rigid material at their respective bonding sites. In some embodiments, the pre-treatment solvent solution may include a solvent carrying dissolved polymeric residue material configured to fill the pores of the porous membrane at the bonding site of the porous membrane.