Abstract:
A liquid crystal display (LCD) includes an array of pixels over a thin film transistor (TFT) substrate. The TFT substrate includes a TFT that has a first metal layer to form a gate electrode and a second metal layer to form a source electrode and a drain electrode for each pixel. The LCD also includes an organic insulation layer disposed over the TFT substrate, where the organic insulator layer has trenches on a top surface. The LCD further includes a third metal layer disposed over the organic insulation layer in the trenches, the trenches having a trench depth at least equal to the thickness of the third metal layer. The LCD also includes a passivation layer over the third metal layer, and a pixel electrode for each pixel over the passivation layer. The LCD further includes a polymer layer over the pixel electrode, and liquid molecules on the polymer layer.
Abstract:
A method is provided for fabricating a thin-film transistor (TFT). The method includes forming a semiconductor layer over a gate insulator that covers a gate electrode, and depositing an insulator layer over the semiconductor layer, as well as etching the insulator layer to form a patterned etch-stop without losing the gate insulator. The method also includes forming a source electrode and a drain electrode over the semiconductor layer and the patterned etch-stop. The method further includes removing a portion of the semiconductor layer beyond the source electrode and the drain electrode such that a remaining portion of the semiconductor layer covers the gate insulator in a first overlapping area of the source electrode and the gate electrode and a second overlapping area of the drain electrode and gate electrode.
Abstract:
An electronic device may include a display having an array of display pixels on a substrate. The display pixels may be organic light-emitting diode display pixels or display pixels in a liquid crystal display. In an organic light-emitting diode display, hybrid thin-film transistor structures may be formed that include semiconducting oxide thin-film transistors, silicon thin-film transistors, and capacitor structures. The capacitor structures may overlap the semiconducting oxide thin-film transistors. Organic light-emitting diode display pixels may have combinations of oxide and silicon transistors. In a liquid crystal display, display driver circuitry may include silicon thin-film transistor circuitry and display pixels may be based on oxide thin-film transistors. A single layer or two different layers of gate metal may be used in forming silicon transistor gates and oxide transistor gates. A silicon transistor may have a gate that overlaps a floating gate structure.
Abstract:
A touch screen having touch circuitry integrated into a display pixel stackup. The touch screen can include a transistor layer, an LED layer and a first layer. The first layer can operate as an LED cathode during a display phase and as touch circuitry during a touch sensing phase. The transistor layer can be at least partially utilized for transitioning between the display phase and the touch sensing phase. The touch screen can be fabricated to reduce or eliminate damage to the LED layer.
Abstract:
A transistor that may be used in electronic displays to selectively activate one or more pixels. The transistor includes a metal layer, a silicon layer deposited on at least a portion of the metal layer, the silicon layer includes an extension portion that extends a distance past the metal layer, and at least three lightly doped regions positioned in the silicon layer. The at least three lightly doped regions have a lower concentration of doping atoms than other portions of the silicon layer forming the transistor.
Abstract:
Embodiments of the present disclosure relate to display devices and methods for manufacturing display devices. Specifically, embodiments of the present disclosure employ an enhanced etching process to create uniformity in the gate insulator of thin-film-transistor (TFTs) by using an active layer to protect the gate insulator from inadvertent etching while patterning an etch stop layer.
Abstract:
Displays with integrated touch sensing circuitry are provided. An integrated touch screen can include multi-function circuit elements that form part of the display circuitry of the display system that generates an image on the display, and also form part of the touch sensing circuitry of a touch sensing system that senses one or more touches on or near the display. The multi-function circuit elements can be, for example, capacitors in display pixels of an LCD that are configured to operate as display circuitry in the display system, and that may also be configured to operate as touch circuitry of the touch sensing system. For example, one or more circuit elements of the display pixel stackup can form a conductive portion of the touch sensing system, such as a charge collector, which can be operated with switches and conductive lines to sense touch.
Abstract:
A method is provided for fabricating a thin-film transistor (TFT). The method includes forming a semiconductor layer over a gate insulator that covers a gate electrode, and depositing an insulator layer over the semiconductor layer, as well as etching the insulator layer to form a patterned etch-stop without losing the gate insulator. The method also includes forming a source electrode and a drain electrode over the semiconductor layer and the patterned etch-stop. The method further includes removing a portion of the semiconductor layer beyond the source electrode and the drain electrode such that a remaining portion of the semiconductor layer covers the gate insulator in a first overlapping area of the source electrode and the gate electrode and a second overlapping area of the drain electrode and gate electrode.
Abstract:
A touch screen including display pixels with capacitive elements is provided. The touch screen includes first common voltage lines connecting capacitive elements in adjacent display pixels, and a second common voltage line connecting first common voltage lines. The pixels can be formed as electrically separated regions by including breaks in the common voltage lines. The regions can include a drive region that is stimulated by stimulation signals, a sense region that receives sense signals corresponding to the stimulation signals. A grounded region can also be included, for example, between a sense region and a drive region. A shield layer can be formed of a substantially high resistance material and disposed to shield a sense region. A black mask line and conductive line under the black mask line can be included, for example, to provide low-resistance paths between a region of pixels and touch circuitry outside the touch screen borders.
Abstract:
Gate line driver circuitry applies an output pulse to each of several gate lines for a display element array. The circuitry has a number of gate drivers each being coupled to drive a respective one of the gate lines. Each of the gate drivers has an output stage in which a high side transistor and a low side transistor are coupled to drive the respective gate line, responsive to at least one clock signal. A pull down transistor is coupled to discharge a control electrode of the output stage. A control circuit having a cascode amplifier is coupled to drive the pull down transistor as a function of a) at least one clock signal and b) feedback from the control electrode. Other embodiments are also described and claimed.