Abstract:
A personal protection device carried or worn by a user has a simple actuator button and transmitter operable within a mesh network covering a monitored environment such as a college campus or industrial park transmits an exigent assistance call to a first responder such as security or DPS (Department of Public Safety) personnel for urgent response. The system for deploying and monitoring the personal protection devices distributes or otherwise transfers possession of an actuator device to a user, such that the actuator device is adapted for wearing or disposing on the user in anticipation of a sudden exigent situation. A distribution repository associates the actuator device with the user, in which the association is temporary for subsequent association with a second user to provide efficient reuse as devices are exchanged or no longer needed.
Abstract:
An epidermal electrode operable independently of the ambient environment, such as the presence of water, sweat, or dry conditions, and achieve a suitable impedance with the epidermal surface for transmitting electrical signals indicative of bodily physiological process such as ECG signals for heart monitoring. The hydrophobic surface mountable electrode including a flexible, conductive substrate of PDMS (Polydimethylsiloxane) with dispersed carbon black and having a substantially planar sensing area adapted for communication with an electrically sensitive surface such as a patient's skin, and an embedded conductor encapsulated in the substrate for connection to a monitor circuit, the terminal having electrical continuity with the planar sensing area.
Abstract:
The present invention relates to methods of screening for antifungal agents by identifying agents that bind to or otherwise inhibit indole-3-acetic acid (IAA) or that bind to or otherwise inhibit the expression or activity of a protein within the Yap family or a gene encoding a protein within the Yap family.
Abstract:
A system and method for synchronizing the phases and frequencies of devices in multi-user, wireless communications systems are provided. A primary beacon signal is transmitted by a destination node in a wireless communications network to a plurality of source nodes. Secondary beacon signals are also exchanged between the source nodes. Using the primary and secondary beacon signals, the nodes generate local phase and frequency estimates which are used to control local phases and frequencies of the source nodes. The source nodes then transmit common information to the destination at carrier frequencies based on the estimated local frequencies and phases, so that the phases and frequencies of the transmitted information are synchronized to facilitate coherent combining of the bandpass signals at the destination. Phase and frequency synchronization can be applied to wireless communications systems having any number of source nodes, and effects of Doppler shifts and moving platforms are accounted for. Acoustic and radio-frequency signaling can be utilized.
Abstract:
Compositions that include microthreads are provided. The compositions can be fully or partially encased in a sleeve along at least a portion of their length and can include biological cells and, optionally, therapeutic agents. Also provided are methods for using the compositions to repair or ameliorate damaged or defective tissue, including cardiovascular tissue (e.g., the myocardium).
Abstract:
An assessment engine includes a definition of inquiry skills being assessed. Assessment models are used to infer skill demonstration as one or more students engage in inquiry within computerized simulations and/or microworlds. A pedagogical agent and/or help system provides real-time feedback to one or more students based on the assessment model outputs, and/or based on additional models that track one or more students developing proficiency across inquiry tasks over time. A pedagogical agent and/or help system for science inquiry tutoring responds in real-time on the basis of knowledge-engineered and data-mined assessment and/or tracking models.
Abstract:
A digital instructional environment leverages an infrared eye-tracker to monitor a learner's reading and viewing of text and simulations for subject matter. The system detects out-of-order reading/viewing patterns that could lead to poor comprehension. The digital learning environment communicates with other tutorial components including simulation environments, pedagogical agents and may respond in real-time to such patterns with messages that guide learners (knowledge acquirers) to return to effective reading/viewing patterns so as to promote effective construction of mental model(s) developed during knowledge acquisition/learning.
Abstract:
Methods and systems for automatic detection of Atrial Fibrillation (AF) are disclosed. The methods and systems use time-varying coherence functions (TVCF) to detect AF. The TVCF is estimated by the multiplication of two time-varying transfer functions (TVTFs).
Abstract:
A generalized approach and methodology for addressing surface traversal and coverage of a 3 Dimensional (3-D) object receives a 3-D wireframe or similar Cartesian based representation, converts the 3-D representation to a u,v system or mapping. Often employed for texture mapping, u.v grid systems define a two dimensional form of an object, often referred to as “unfolding” of an object. Configurations herein define a u.v grid system directly on the 3-D object for computing a coverage path, typically an aggregation of raster passes to traverse an entire 3-D surface. From a robotic manipulator, a 3D freeform surface, and task constraints, the approach determines whether there exists a feasible continuous motion plan to cover the surface, and if so, produces a uniform coverage path that best satisfies task constraints resulting from the physical object and robot kinematics.
Abstract:
Nanoimprint lithography forms a microfeature array on a substrate responsive to inkjet printing techniques for high resolution printing of circuit elements and other features with highly accurate fidelity to predetermined boundaries. The microfeature array is defined by micropillars formed between intersecting microchannels in the substrate. The micropillars are responsive to a sequence of ink droplets in a highly controlled and predictable manner based on the droplet volume, droplet spacing and temperature. The flow of liquid ink is restrained by the micropillars for pinning the ink for avoiding uncontrolled ink flow as occurs on a flat surface. Subsequent layers of deposited ink tend to follow pining of previous layers, allowing an iterative buildup of layers for forming a trace of sufficient thickness and a high aspect ratio allowing traces extending above the depth of the microchannels for aiding communication with surface mount components.