Abstract:
An electronic device made by a process that includes forming a first layer over a substrate and placing a first liquid composition over a first portion of the first layer. The first liquid composition includes at least a first guest material and a first liquid medium. The first liquid composition comes in contact with the first layer and a substantial amount of the first guest material intermixes with the first layer. An electronic device includes a substrate and a continuous first layer overlying the substrate. The continuous layer includes a first portion in which an electronic component lies and a second portion where no electronic component lies. The first portion is at least 30 nm thick and includes a first guest material, and the second portion is no more than 40 nm thick.
Abstract:
A method of operating an electronic device having a field-effect transistor including a first source/drain region and a second source/drain region, the first source/drain region being connected to a first terminal of an electronic component which is either a radiation-emitting electronic component or a radiation-responsive electronic component, the method comprising sending a first signal to either a second terminal of the electronic component or the second source/drain region and during a second time period electrically floating the second terminal or the second source/drain region, or both, of the electronic component. There is also provided a method of operating an electronic device that comprises having a first switch at a first setting and a second switch at a second setting during a first time period and during a second time period, changing the first switch, the second switch, or both to different setting(s).
Abstract:
An electronic device includes a radiation-emitting component, a radiation-responsive component, or a combination thereof. In one embodiment, the electronic device includes a substrate and a first structure overlying the substrate. The electronic device also includes a second structure that includes a first layer, wherein the first layer has a first refractive index, and the first layer includes a first edge. The electronic device further includes a second layer overlying at least portions of the first structure and the second structure at the first edge. The second layer has a second refractive index that is lower than the first refractive index. In another embodiment, the first structure includes a layer having a perimeter and a pattern lying within the perimeter. The pattern extends at least partly though the first layer to define an opening with a first edge. In another embodiment, a process is used to form the electronic device.
Abstract:
A ductwork assembly can be used with an electronic device wherein the electronic device includes a fan and the ductwork assembly is configured to receive a heat transfer fluid from the fan. A disperser lies within the ductwork assembly and is attached thereto in order to affect at least a portion of a flow of the heat transfer fluid. The ductwork assembly may also include a first channel and the first channel is characterized by a first average fluid velocity that is a highest average fluid velocity of all channels within the ductwork assembly. The ductwork assembly may include a second channel that is characterized by a second average fluid velocity that is a lowest average fluid velocity of all channels within the ductwork assembly. The second averaged fluid velocity may be no less than 90% of the first averaged fluid velocity.
Abstract:
An electronic device includes a substrate including a pixel driving circuit, a first conductive member, and a second conductive member. The first and second conductive members are spaced apart, the first conductive member is connected to the pixel driving circuit, and the second conductive member can be part of a power transmission line. The electronic device also includes an electronic component that includes a first electrode that contacts the first conductive member, a second electrode that is connected to but does not contact the second conductive member, and an organic layer lying between the first and second electrodes. The electronic device also includes a third conductive member that is connected to the second electrode and the second conductive member, and contacts the second conductive member. In one embodiment, a process for forming the electronic device uses the second electrode as a hardmask when removing portions of the first organic layer.
Abstract:
A process for forming an electronic device can include fabricating an electronic device that comprises a first workpiece including a first electronic component that includes a first organic layer. The process can also include repairing the electronic device after fabricating the electronic device.
Abstract:
A method for evaluating permeability of Earth formations includes determining a transverse nuclear magnetic relaxation spectrum by performing a nuclear magnetic resonance experiment directly on drill cuttings of the Earth formation removed from a wellbore, and estimating permeability from the transverse nuclear magnetic relaxation spectrum.
Abstract:
Different formulations of copolymers can be used to adjust or “tune” the energy levels (HOMO and LUMO) and the color of light emitted by an organic electronic device. The copolymer may principally include of electron-rich and electron-deficient monomeric units whose composition and number are chose to optimize the efficiency of the device. A relatively smaller amount of fluorophore monomeric units may also be used to adjust the emission wavelength. The copolymer can be used in displays and potentially other electronic devices.
Abstract:
An aspect of the present invention provides a heat sink has a side with a pattern that extends at least partially through a thickness of the heat sink. The heat sink also has a thickness no greater than 9 mm. In another embodiment, a heat sink has a side with a pattern that extends at least partially through a thickness of the heat sink. The heat sink also has a ratio of area:thickness, as seen from a plan view, of at least 500:1 when the area and thickness are expressed in units of mm2 and mm, respectively.
Abstract:
An electronic device includes at least one gamma correction unit including a first gamma correction unit. In one embodiment, the first gamma correction unit includes at least one tap that is configured to allow the gamma function for the first gamma correction unit to be changed after the electronic device has been fabricated. In another embodiment, a process for using the electronic device operating the array during a first time period using a first gamma function for the first gamma correction unit. The process also includes changing the first gamma function to a second gamma function. The process further includes operating the array during a second time period using the second gamma function for the first gamma correction unit. A data processing system readable medium has code that includes instructions for carrying out the process.