Abstract:
A method of modeling anatomic deformation comprises receiving a reference three dimensional model of a branched anatomical formation in a reference state. The method further comprises detecting deflection of the branched anatomical fomation with a shape sensor to create a three dimensional deformation field. The method further comprises applying the three dimensional deformation field to the reference three dimensional model to create a deformed three dimensional model of a deformed state of the branched anatomical formation. The method further comprises dynamically displaying an image of the deformed three dimensional model of the deformed state of the branched anatomical formation. The method further comprises displaying a composite image including an image of an interventional instrument positioned within the branched anatomical formation and the dynamically displayed image of the deformed three dimensional model of the deformed state of the branched anatomical formation.
Abstract:
A robotic surgical system comprising a surgical instrument. The surgical instrument includes an elongate, hollow shaft having a proximal end, a distal end, and a flexible section. The surgical instrument also includes a sensor apparatus comprising an electromagnetic sensor. The robotic surgical system also includes a force transmission mechanism coupled to the proximal end of the shaft and a processor communicatively coupled to at least the sensor apparatus. The processor is configured to receive sensor data from the sensor apparatus and to use the sensor data with video information, mechanical property data for the surgical instrument, and material property data for the surgical instrument to determine position and orientation information for the surgical instrument.
Abstract:
A system comprises an arm including a bendable section and a force transmission mechanism. The system also comprises an actuation mechanism coupled to the force transmission mechanism to bend the bendable section. The system also comprises an electronic data processor configured to receive sensor data about the bendable section and determine external force information about at least one of a magnitude or a direction of an external force applied to the arm from the sensor data. the processor is also configured to determine a pose of the bendable section from the sensor data and generate control information for the actuation mechanism to maintain the pose of the bendable section in a stationary configuration as the external force is applied to or withdrawn from the arm.
Abstract:
A medical system comprises a surgical device including a tracking system. The medical system also includes a memory storing anatomical data describing a patient anatomy. The medical system also includes a processor configured for generating a first model, that includes a set of anatomical passageways including a first proximal branch connected to a first distal branch, from the stored anatomical data describing the patient anatomy. The processor is also configured for determining, by the tracking system, a shape of an elongate flexible body of the surgical device positioned within the first proximal branch and the first distal branch of the set of anatomical passageways. The processor is also configured for computing, based on the determined shape of the elongate flexible body, a total set of forces acting on the set of anatomical passageways in response to the surgical device positioned within the first proximal branch and the first distal branch. The processor is also configured for deforming the first model into a second model of the anatomical passageways by adjusting at least one joint between branches in the set of anatomical passageways in the first model based on the total set of forces computed, to thereby change a pose of at least one branch through which the surgical device extends and at least one additional branch through which the surgical device does not extend.
Abstract:
A medical tracking system comprises a fiducial apparatus that includes a sensor docking feature configured to mate with a mating portion of a sensor device. The sensor docking feature retains the mating portion in a known configuration. The fiducial apparatus also includes at least one imageable fiducial marker and a surface configured for attachment to an anatomy of a patient.
Abstract:
A catheter system comprises an elongate flexible catheter and a support structure mounted on the catheter. The support structure comprises a first alignment feature and a second alignment feature. The system further comprises a first sensor component mated with the first alignment feature and a second sensor component mated with the second alignment feature. The first sensor component is fixed relative to the second sensor component in at least one degree of freedom at the support structure by the first alignment feature.
Abstract:
A method comprises navigating a patient's anatomy with a medical instrument, the instrument comprising a sensing tool. The method further includes correlating a position of the instrument with a model of the patient's anatomy. The method further includes, while navigating the patient's anatomy, updating the model based on data obtained by the sensing tool.
Abstract:
A sensing system includes an off-axis coil in which wire is wound in loops about a roll axis and at an angle to the roll axis. In particular, the loops define respective areas that have a normal direction at a non-zero angle relative to the roll axis. A field generator can generate a variable magnetic field through the coil, and sensor logic can be coupled to the coil and configured to determine a measurement of a roll angle of the coil about the first axis using an electrical signal induced in the coil.
Abstract:
A medical system provides navigation assistance to a surgeon so that the surgeon may navigate a flexible medical device through linked passages of an anatomical structure to a target in or adjacent to the anatomical structure. As the medical device moves through the linked passages, images are captured by an image capturing element at its distal end and pose and shape information for the medical device are received from sensors disposed in the medical device. A 4-D computer model of the anatomical structure is registered to the medical device using one or both of 4-D shape registration and virtual camera registration so that the captured image and a virtual image generated from the perspective of a virtual camera are registered to each other and displayed while providing an indication of a navigational path to the target.
Abstract:
An apparatus for guiding a flexible instrument comprises an elongated support assembly having a longitudinal axis. The elongated support assembly is adapted to laterally receive into engagement and longitudinally support an elongated flexible instrument.