Abstract:
A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process.
Abstract:
A hybrid component (30) having a cast single crystal superalloy portion (32) and an attached powder metallurgy material portion (34). The component may be a blade (30) of a gas turbine engine having a single crystal airfoil section and a powder metallurgy material root section. The powder metallurgy material may extend to form a core (36) within the airfoil section and may include cooling passages 38. The single crystal portion has a relatively simple geometry so that casting yields are optimized. The powder metallurgical portion includes the lower stressed and more complicated geometry sections of the component. A method of forming such a component includes casting the single crystal superalloy portion, then using that portion to form part of the mold for forming the powder metallurgy material portion.
Abstract:
The compressor has two rotors (14, 16), which are rotatably mounted in a housing (10) by means of a shaft each, the rotors (14, 16) rotating without contact with the housing. The rotors (14, 16) consist of a powder-metallurgical AlnullSi alloy, and the housing (10) consists essentially of aluminum.
Abstract:
An article includes turbulation material bonded to a surface of a substrate via a bonding agent, such as a braze alloy. In an embodiment, the turbulation material includes a particulate phase of discrete metal alloy particles having an average particle size within a range of about 125 microns to about 4000 microns. Other embodiments include methods for applying turbulation and articles for forming turbulation.
Abstract:
The present invention provides, in one embodiment, an annular turbine seal for disposition in a turbine between a rotatable component having an axis of rotation and a turbine housing about the same axis of rotation. The turbine seal has a plurality of arcuate seal carrier segments that have an abradable portion secured to the seal carrier segments. In addition, at least one spring is disposed on the seal carrier segment to exert a force and maintain the seal carrier segment adjacent to the rotatable component.
Abstract:
In order to make labyrinth seal lips on the periphery of a metal moving part of a turbomachine, a thick layer of refractory material that adheres to the metal is made prior to assembling the moving part, the refractory material advantageously comprising at least one metal selected for example from Fe, Co, and Ni, together with at least one ceramic selected for example from borides, nitrides, carbides, and refractory oxides. The labyrinth seal lips that are to be made are machined to their final dimensions in the deposited thick layer.
Abstract:
An article includes turbulation material bonded to a surface of a substrate via a bonding agent, such as a braze alloy. In an embodiment, the turbulation material includes a particulate phase of discrete metal alloy particles having an average particle size within a range of about 125 microns to about 4000 microns. Other embodiments include methods for applying turbulation and articles for forming turbulation.
Abstract:
The invention includes processes and products made by the processes. The processes include making forms and parts by friable mold casting or die casting using molten Nitinol poured or injected into the mold or die. After the Nitinol has cooled to a solid state, it is removed from the mold by disintegrating the friable material of the mold and is heated to an elevated temperature under high pressure to consolidate the Nitinol and remove any internal voids. The parts and forms are then heat treated to reduce brittleness and improve toughness and impact strength. The part may be hot machined to reduce it to near net size, and may be ground to reduce the part to the exact specified part size. For example, cylindrical parts can be centerless ground; balls can be ground in a conventional ball grinder; flat stock can be surface ground. For parts requiring a smooth surface finish, polishing or lapping provides the specified surface finish on the part, down to 0.5 microinch RMS or finer. The part may be heat treated to obtain the desired hardness, from RC40 to RC65. An integral surface oxide of any of several colors can be formed on the surface of the part. The oxide surface may itself be polished to an even finer surface finish. Shape memory effect may be obtained in Type 60 Nitinol parts and forms that have been hot-worked by heat treating to about 675° C.-700° C. and oven cooling slowly over 8-10 hours to ambient temperature.
Abstract:
The main object of the present invention is to provide a steam turbine rotor shaft whose high-temperature strength is excellent at a selected temperature of 650 degrees C. A steam turbine rotor shaft comprising 0.05% to 0.20% by weight of carbon, 0.20% or less by weight of silicon, 0.05% to 1.5% by weight of manganese, 0.01% to 1.0% by weight of nickel, 9.0% to 13.0% by weight of chrome, 0.05% to 2.0% by weight of molybdenum, 0.5% to 5.0% by weight of tungsten, 0.05% to 0.30% by weight of vanadium, 0.01% to 0.20% by weight of niobium, 0.5% to 10.0% by weight of cobalt, 0.01% to 0.1% by weight of nitrogen, 0.001% to 0.030% by weight of boron, 0.0005% to 0.006% by weight of aluminum, and the remaining parts substantially comprising iron and inevitable impurities.
Abstract:
A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base columnar thermal barrier coating (20) on the alloy surface, where a heat resistant ceramic oxide sheath material (32′ or 34′) covers the columns (28), and the sheath material is the reaction product of a precursor ceramic oxide sheath material and the base thermal barrier coating material.