Abstract:
A first and second electronic device each including a connection surface and a magnetic element. The first and second devices may be in contact along the respective connection surfaces. The magnetic elements may be configured to align the first and second devices by moving either or both of the first and second devices relative to each other to achieve an aligned position. The magnetic element may also be operative to resist disconnection of first and second electronic devices when in the aligned position.
Abstract:
A stackable connector interface with magnetic retention for electronic devices and accessories can allow power and data to be transferred between one or more stacked connectors. Each interconnected stackable connector may include one or more magnetic elements, which magnetic elements may have poles arranged to facilitate mating with other stackable connectors. The magnetic elements may also provide a magnetic retention force that holds mated connectors in contact with each other. The connectors can also include connection detection circuitry for determining whether the connectors are mated with other connectors, thereby allowing the connectors to prevent live contacts from being exposed at an unmated surface of the connectors. In addition to connection detection circuitry, routing circuitry may also be included to determine how signals should be transferred between the interconnected stackable connectors and/or corresponding devices.
Abstract:
A dual orientation plug connector having a tab portion with first and second opposing exterior surfaces that are substantially identical, parallel and opposite each other. Each exterior surface may have a plurality of electrical contacts. A substantially u-shaped metallic band surrounds a portion of the periphery of the plug connector. A contact assembly having an upper contact carrier, intermediate conductive plate and lower contact carrier may be disposed within the tab portion of the plug connector. A circuit assembly may be disposed within a body portion of the plug connector and electrically coupled to the plurality of electrical contacts.
Abstract:
Connector receptacles having a contoured form factor that allows their use in stylized enclosures. These receptacles may also be contoured to avoid circuitry internal to the device enclosure. The contoured form factor may also simplify the assembly of the connector receptacle.
Abstract:
A dual orientation connector having a connector tab with first and second major opposing sides and a plurality of electrical contacts carried by the connector tab. The plurality of contacts includes a first set of external contacts formed at the first major side and a second set of external contacts formed at the second major side. Each individual contact in the first plurality of contacts is electrically connected within the tab or body to a corresponding contact in the second plurality of contacts. In some embodiments contacts in the first and second pluralities of contacts that are directly opposite each other are coupled together. In some other embodiments, contacts in the first and second pluralities of contacts that are in a cater cornered relationship with each other are coupled together. The first plurality of contacts are symmetrically spaced with the second plurality of contacts and the connector tab is shaped to have 180 degree symmetry so that it can be inserted and operatively coupled to a corresponding receptacle connector in either of two insertion orientations.
Abstract:
A dual orientation connector having a connector tab with first and second major opposing sides and a plurality of electrical contacts carried by the connector tab. The plurality of contacts includes a first set of external contacts formed at the first major side and a second set of external contacts formed at the second major side. Each individual contact in the first plurality of contacts is electrically connected within the tab or body to a corresponding contact in the second plurality of contacts. In some embodiments contacts in the first and second pluralities of contacts that are directly opposite each other are coupled together. In some other embodiments, contacts in the first and second pluralities of contacts that are in a cater cornered relationship with each other are coupled together. The first plurality of contacts are symmetrically spaced with the second plurality of contacts and the connector tab is shaped to have 180 degree symmetry so that it can be inserted and operatively coupled to a corresponding receptacle connector in either of two insertion orientations.
Abstract:
Optical connectors, adapters, and devices with such are provided. Optical connectors can have a relatively large diameter for the optical interface. For example, optical connectors can include a collector for receiving optical signals at a large opening and providing signals to a photodiode at a small opening of the collector. Such optical connectors with a large diameter for an optical interface can advantageously provide reduced alignment tolerances and/or provide high data rates. Adapters can use a collector to convert optical data signals from a large width fiber to a smaller width fiber. An optical connector can be in a docking station, and lie underneath a bottom surface of a recess in the docking station.