Abstract:
A liquid crystal display element is disclosed for displaying an image. The liquid crystal display element comprises a liquid crystal display layer in which voltages are applied to a transmissive display unit and a reflective display unit, defined in one pixel, independently of each other, and a light source for irradiating the liquid crystal display layer with light from the back, and a reflection control element disposed between the liquid crystal display layer and light source. The liquid crystal display element is switched between a reflective state and a transmissive state in accordance with a voltage applied to the reflection control element. The liquid crystal display element is switched among a transmissive display mode, a combined reflective/transmissive display mode, and a reflective display mode, by utilizing the transmissive display unit and reflective display unit to display an image independently of each other.
Abstract:
A beam direction control element has transparent areas and light absorption areas alternately arranged on a surface of a substrate, wherein the light absorption areas function as a louver for controlling the direction of a beam of light. The beam direction control element is manufactured by disposing an optically transparent material on a first transparent substrate to form transparent ridges which constitute the transparent areas, filling curable and photo-absorptive fluid in gaps between the transparent ridges, and then curing the fluid to form the light absorption areas.
Abstract:
A thin-film transistor array includes an electrically insulating substrate, a plurality of thin-film transistors arranged in a matrix on the substrate, and each including a channel, a source, and a drain each comprised of an oxide-semiconductor film, a pixel electrode integrally formed with the drain, a source signal line through which a source signal is transmitted to a group of thin-film transistors, a gate signal line through which a gate signal is transmitted to a group of thin-film transistors, a source terminal formed at an end of the source signal line, and a gate terminal formed at an end of the gate signal line. The source terminal and the gate terminal are formed in the same layer as a layer in which the channel is formed. The source terminal and the gate terminal have the same electric conductivity as that of the pixel electrode.
Abstract:
In a display device, white LEDs and bluish white LEDs are arranged in alternating fashion on the light-incident surface side of a light-guide plate. On the light-exit side of the light-guide plate is disposed a transparent/scattering switching element switchable between a state of scattering incident light, and a state of transmitting light unchanged without scattering. During a narrow-angle display, only the white LEDs are lit, and the transparent/scattering switching element is placed in the transparent state, while during a wide-angle display, both the white LEDs and the bluish white LEDs are lit, and the transparent/scattering switching element is placed in the scattering state.
Abstract:
A semiconductor device in which a semiconductor layer is formed on an insulating substrate with a front-end insulating layer interposed between the semiconductor layer and the insulating substrate is provided which is capable of preventing action of an impurity contained in the insulating substrate on the semiconductor layer and of improving reliability of the semiconductor device. In a TFT (Thin Film Transistor), boron is made to be contained in a region located about 100 nm or less apart from a surface of the insulating substrate so that boron concentration decreases at an average rate being about 1/1000-fold per 1 nm from the surface of the insulating substrate toward the semiconductor layer.
Abstract:
A vertically aligned thin-film transistor array substrate in which there is no reduction in aperture ratio includes an etching-stop layer formed on an insulating layer; a passivation layer formed on the insulating layer that includes the etching-stop layer; a depression formed in the passivation layer and hollowing the passivation layer to the surface of the etching-stop layer; and a pixel electrode, which is recessed in conformity with the depression, formed on the passivation layer that includes the depression; wherein the etching-stop layer comprises a transparent semiconductor.
Abstract:
An LCD device is obtained by joining a counter substrate and a TFT substrate with a sealing member having at least a UV-curable characteristic. The sealing member includes a UV-curable resin and high-refractive layers formed respectively on the surfaces of spacers which are dispersed in the UV-curable resin, each of the surfaces of the spacers having a refractive index higher than that of the UV-curable resin.
Abstract:
A liquid crystal display device is provided which is capable of realizing high-quality display screen with low power consumption. A charge equilibration control signal VCST is outputted by a control unit (for example, driving timing generating section) for charge equilibration time in accordance with a video signal. At time of change in polarities of common voltages vCOM1 and vCOM2, a charge equilibration unit causes a shorting of a circuit between common electrodes COM1 and COM2 in accordance with the charge equilibration control signal so that a charge equilibration occurs between the common electrodes COM1 and COM2. The switching section turns off common voltages vCOM1 and vCOM respectively to the common electrodes COM1 and COM2. According to the charge equilibration control signal, the connection is turned on between the common electrodes COM1 and COM2.
Abstract:
A panel module for an LCD device has an LCD panel including a TFT panel and a counter panel, signal line and scanning line drive boards for connecting to external circuits, and TCPs connecting together the TFT panel and the drive boards. The signal line driver TCP has a plurality of slits in the film substrate thereof and bent at the slits, allow the signal line drive board to be located on the rear side of the backlight unit of the LCD device. The panel module is suited any of stacked, L-shaped or U-shaped board structure.
Abstract:
A stacked film patterning method is provided which is capable of reliably removing residual substances remaining after etching of a metal film, improving etching uniformity of a silicon film, and preventing an occurrence of etching residues. A micro-crystal film and a chromium film are sequentially formed on an insulating film serving as a front-end film and the chromium film is etched to be patterned by using a resist as a mask. Next, a micro-crystal silicon film on which the residual substances exist is exposed to plasma of a mixed gas including chlorine gas and oxygen gas to selectively etch the residual substances on a surface of the micro-crystal silicon film. After that, the micro-crystal silicon film is dry etched.