Abstract:
A method of designing an addition circuit, and an addition circuit designed according to the method are described. The design technique is optimised to facilitate design of an addition circuit of minimum depth. The design technique takes into account the number of logical stages of the addition circuit and the manner in which those stages are connected by spanning paths to create fan-out nodes. The number of fan-out nodes per level can be optimized. For bit lengths n, the number (mnull2) of logical stages is nnull2mnull1 and for bit lengths n not of a binary order, the number (mnull2) of logical stages is nbonull2mnull1, where nbo is the next largest binary order after n.
Abstract:
Call frame information is used by debugging software. It records how to restore the parent stack frame at any point during execution of a program. It is normally generated during compilation and stored in the executable in a compressed format, consisting of sequences of instructions that describe how the current call frame changes during execution of each function. Described herein is a means of generating call frame information at link time, using linker macro calls generated by a small set of assembler macros.
Abstract:
A system comprising a host, a target and connection means therebetween. The host has means for providing a clock signal, first output means for outputting said clock signal to said target via said connection means and second output means for outputting data to said target via said connection means, said data being clocked out by said clock signal, said target having first input means for receiving said clock signal from said host, second input means for receiving said data from said host and first output means for outputting data to said host via said connection means. The host further comprises input means for receiving said data from said target, and oversampling means for oversampling the received data from the target and controlling the clocking in of said data received from said target in dependence on said oversampling.
Abstract:
A mute switch including a field effect transistor receiving a mute control signal at its gate for selectively supplying an audio signal from an input node to an output node. A bipolar transistor is connected between the input node and the FET for reducing the voltage level of the audio signal prior to its application to the input node, and a further bipolar transistor is connected between the FET and the output node for raising the voltage level of the audio signal prior to its application to the output node. This serves to maintain the DC bias level of the audio output signal independently of the status of the mute control signal.
Abstract:
A graphic processor having an index processing unit for pre-processing a list of vertices making up a three-dimensional image. The method of pre-processing comprising the following steps. First, decomposing the three-dimensional image into a plurality of primitive elements each defined by a set of vertices, each vertex comprising vertex information stored in a vertex storage area and addressable by a vertex index. Then receiving said vertex indices and creating a set of unique indices identifying a batch of vertices and loading only the vertices corresponding to said unique indices into the vertex storage area. Finally creating transformed primitive elements from transformed vertex information addressed in the vertex storage area using the unique indices.
Abstract:
A digital frequency divider includes phase control of the output signal in increments of whole or half cycles of the input frequency. Whole cycle phase control is achieved by varying (logically or physically) the tap off point of a shift register loaded with a bit pattern for appropriate division. Half cycle phase changes are achieved by a multiplexer selecting one of two signals every half cycle.
Abstract:
To establish whether a precharged node remains isolated or alternatively is subject to discharge, the conventional circuit allows uncertainty. For a period after evaluation starts, the conventional circuit will give a tentative result that may subsequently turn out to be wrong. During evaluation power is dissipated. A differential offset dynamic comparator and timing circuit are used to evaluate whether the node is being discharged. Because the comparator has an offset, much smaller deviations from the precharge potential can be sensed: because it is dynamic, it does not consume steady state current. The timing circuit permits precise knowledge of when to look at the output: before the timing period has elapsed, the result is known to be invalid.
Abstract:
The present invention relates to a radio receiver, particularly to a receiver for use in single-frequency applications, such as GPS, and to a frequency generator, which may be used in such a radio receiver, or elsewhere. The frequency generator comprises a tuned circuit connected between the emitter of the transistor and ground, such that a voltage signal at the basic frequency appears on the emitter terminal of the transistor. This arrangement has the advantage that the two frequencies appear on separate ports, and provides a radio receiver including radio receiver circuitry for connection to digital signal processing circuitry, reducing the complexity of the overall circuit. Additionally, there is a radio receiver wherein separate first and second local oscillator signals are generated from the terminal of s single transistor, avoiding the need for cascade multiplication stages, again reducing the size and complexity of the overall circuit. Further, circuitry is included generating an oscillator signal whereby the signal processing means tolerates the resulting frequency errors, and a single frequency direct downconversion receiver, comprising means for sub-sampling and one-bit coding the demodulated signal, and a transistor capable of decoding a microwave local oscillator signal and a digital signal processor with a clock signal for tolerating frequency errors.