Abstract:
Orchestrated encoding schemes facilitate encoding and decoding of data in content signals at several points in the distribution path of content items. Orchestrated encoding adheres to a set of encoding rules that enables multiple watermarks and corresponding applications to co-exist, avoids collisions among watermarks, and simplifies metadata and routing database infrastructure.
Abstract:
The present technology concerns cell phones and other portable devices, and more particularly concerns use of such devices in connection with media content (electronic and physical) and with other systems (e.g., televisions, digital video recorders, and electronic program directories). In certain arrangements, identification of audio or visual content to which the user is being exposed is determined—in part—using information about one or more other people who are known to be present with the user. Information about the user's current location, or about the user's previous activities, can also be used in inferring the identity of content to which the user is currently being exposed. A great number of other features and arrangements are also detailed.
Abstract:
An image is processed to encode a digital watermark, with different regions thereof processed using different levels of watermark intensity. In an image comprised of elements of differing sizes (e.g., halftone shapes of different sizes, or lines of different width), the different regions can be defined by reference to the sizes of elements contained therein. Regions characterized by relatively small elements can be watermarked at a relatively low intensity. Regions characterized by relatively large elements can be watermarked at a relatively high intensity. A variety of other features are also discussed.
Abstract:
A content fingerprint based recognition system employs local caching of portions of a fingerprint database to manage network services for identifying which programs a user's mobile device is exposed to and the timing of events within the program. The system enables background recognition and synchronization of network services in a way that consumes less device power and bandwidth.
Abstract:
A smartphone is adapted for use as an imaging spectrometer, by synchronized pulsing of different LED light sources as different image frames are captured by the phone's CMOS image sensor. A particular implementation employs the CIE color matching functions, and/or their orthogonally transformed functions, to enable direct chromaticity capture. A great variety of other features and arrangements are also detailed.
Abstract:
Cell phones and other portable devices are equipped with a variety of technologies by which existing functionality is improved, and new functionality is provided. Some aspects relate to imaging architectures, in which a cell phone's image sensor is one in a chain of stages that successively act on instructions/data, to capture and later process imagery. Other aspects relate to distribution of processing tasks between the device and remote resources (“the cloud”). Elemental image processing, such as filtering and edge detection—and even some simpler template matching operations—may be performed on the cell phone. Other operations are referred out to remote service providers. The remote service providers can be identified using techniques such as a reverse auction, though which they compete for processing tasks. Other aspects of the disclosed technologies relate to visual search capabilities, and determining appropriate actions responsive to different image inputs. Still others concern metadata generation, processing, and representation. A great number of other features and arrangements are also detailed.
Abstract:
An image is processed to encode a digital watermark, with different regions thereof processed using different levels of watermark intensity. In an image comprised of elements of differing sizes (e.g., halftone shapes of different sizes, or lines of different width), the different regions can be defined by reference to the sizes of elements contained therein. Regions characterized by relatively small elements can be watermarked at a relatively low intensity. Regions characterized by relatively large elements can be watermarked at a relatively high intensity. A variety of other features are also discussed.
Abstract:
A decade from now, a visit to the supermarket will be a very different experience than the familiar experiences of decades past. Product packaging will come alive with interactivity—each object a portal into a rich tapestry of experiences, with contributions authored by the product brand, by the store selling the product, and by other shoppers. The present technology concerns arrangements for authoring and delivering such experiences. A great variety of other features and technologies are also detailed.
Abstract:
This disclosure details image and audio signal processing methods and associated equipment to robustly encode transaction parameters in rendered displays, printed objects and audio. It also details corresponding decoding methods and equipment to recover these parameters. Further, it details object authentication processing and equipment to validate a transaction for an object, employing a trust network protocol for maintaining a trusted transaction history of the object. Various alternative forms of this technology are described.
Abstract:
Images depicting items in a waste flow on a conveyor belt are provided to two analysis systems. The first system processes images to decode digital watermark payload data found on certain of the items (e.g., plastic containers). This payload data is used to look up corresponding attribute metadata for the items in a database, such as the type of plastic in each item, and whether the item was used as a food container or not. The second analysis system can be a spectroscopy system that determines the type of plastic in each item by its absorption characteristics. When the two systems conflict in identifying the plastic type, a sorting logic processor applies a rule set to arbitrate the conflict and determine which plastic type is most likely. The item is then sorted into one of several different bins depending on a combination of the final plastic identification, and whether the item was used as a food container or not. A variety of other features and arrangements are also detailed.