Abstract:
A motor includes a stator and a rotor provided inside the stator. The rotor includes a rotor core having a magnet insertion hole and two permanent magnets disposed in the magnet insertion hole. The rotor core has a first magnet holding portion disposed between the two permanent magnets and holding the two permanent magnets, an opening disposed on an inner side of the first magnet holding portion in a radial direction of the rotor core, and a center hole disposed at a center of the rotor core in the radial direction. A distance from the opening to the magnet insertion hole is shorter than a distance from the opening to the center hole.
Abstract:
Each lamination of the lamination stack comprises at least one assembly of coupling elements, said assembly comprising one insertion clamp, one receiving clamp and at least one receiving window, said coupling elements maintaining the same relative positioning from one another, the insertion clamp and the receiving clamp being defined by respective portions of the lamination axially projecting to the same side of the latter, each insertion clamp of a lamination being fitted, by interference, in the interior of a receiving clamp of an adjacent lamination, and each receiving clamp of a lamination being housed in the receiving window of at least one lamination of the stack.
Abstract:
The rotation of the synchronous reluctance motor is controlled through energization of the winding with current of a phase having a ratio k between the total sum of radial-direction widths of the slits on the q-axis and a magnetic gap length, and having a lead angle β from the d-axis. Among the core layers, the radial-direction width, on the q-axis, of the core layer that lies at a position closest in the circumferential direction to a point P at which there intersect the outer periphery of the rotor and the straight line passing through the rotor center and drawn at an angle ψ=arctan(tan β/(1+0.2k)) from the d-axis, is larger than the radial-direction width of other core layers on the q-axis.
Abstract:
A compressor equipped with an electric motor having a stator including a stator core, coils, and a string. The stator core is formed of laminated core plates and has crimped portions in boundaries between a yoke and bases of teeth. The crimped portions are spaced at equal intervals in a circumferential direction of the stator core. Coil ends are laced by the string in such a way that the string is not passed through teeth spaces having the crimped portions disposed outward thereof in a radial direction of the stator core, but passed through the teeth spaces that are located adjacently on opposite sides of each of the teeth spaces having the crimped portions disposed radially outward thereof and also passed through at least one of any two adjacent of the teeth spaces.
Abstract:
In a method for manufacturing a rotor, each magnetic steel sheet has protrusions on its one surface and has recesses on the other surface at positions corresponding to the protrusions. The plurality of magnetic steel sheets are joined together as the protrusions of each magnetic steel sheet are fitted in the recesses of its adjoining magnetic steel sheet. A shaft member is inserted into a rotor core in the same direction as that in which the protrusions protrude.
Abstract:
A manufacturing method of a core for a rotary electric machine includes: forming a crimped portion on both a first magnetic steel sheet and a second magnetic steel sheet. The crimped portion has a recessed portion that is recessed from a first surface and a protruding portion that protrudes from a second surface in a position on the reverse side of the recessed portion on the second surface; and stacking the first magnetic steel sheet and the second magnetic steel sheet while curving the first magnetic steel sheet such that a first surface side bulges out, and inserting the protruding portion of the crimped portion of the second magnetic steel sheet into the recessed portion of the crimped portion of a curved first magnetic steel sheet.
Abstract:
A rotor (1) for a rotary electric machine includes a rotor core (2) including a first core portion (20) having a plurality of core pieces (5, 6) joined together through caulking portions (2a) and a hollow first lightening portion (20a), and a second core portion (21) having a plurality of core pieces (7, 8) joined together through caulking portions (2a) and a press-fit portion (21b). A radial magnetic path width of a ring-shaped outer circumferential portion formed by laminating the first core portion (20) and the second core portion (21) changes along a circumferential direction of the rotor core (2). Therefore, a weight and an inertia can be reduced.
Abstract:
A rotor blade set for an electric motor, having a plurality of axially assembled multi-part and/or single-part blades having circle segment shaped blade sections, between which radial and circumferentially open recesses are formed for receiving a respective magnet, wherein a predeterminable number of blade sections of the single-part or multi-part blades have at least one azimuthal clip on the circle radius, which clip bends axially during the insertion of the corresponding magnet into the respective recess, and wherein the circle segment-shaped blade sections of the single-part or multipart blades have at least one notch on the circle radius, in which notch a corresponding clip of a blade section of an axially spaced blade engages following the axial bending.
Abstract:
An object is to easily inject resin into a gap of a laminated core which constitutes a rotating electric machine. Included are: a resin supplying unit which feeds the resin; and a resin injection unit which injects the resin into an axial hole of the laminated core. The resin injection unit has an injection pipe and an elastic ring attached to the injection pipe. This elastic ring is made to firmly attach to the inner periphery of the axial hole; the resin is supplied from the resin supplying unit; and the resin is injected into the gap of the laminated core through the axial hole of the laminated core.
Abstract:
A rotary lamination apparatus has a die assembly rotatable about an axis and a mounting table received in an axial hole extending through the die assembly. Through rotation of the die assembly, punched core pieces are mounted on the mounting table while being rotatively offset. A drive portion is employed to rotate the mounting table integrally with the die assembly about the axis of the die assembly.