Abstract:
Methods and systems for promoting hydrogen gas distribution within cellulosic biomass solids during hydrothermal digestion. One exemplary method can comprise providing cellulosic biomass solids in a hydrothermal digestion unit in the presence of a digestion solvent and a slurry catalyst capable of activating molecular hydrogen; and heating the cellulosic biomass solids and the digestion solvent in the presence of molecular hydrogen, thereby forming an alcoholic component derived from the cellulosic biomass solids, at least a portion of the molecular hydrogen being introduced to the hydrothermal digestion unit via a plurality of spaced apart fluid inlets vertically disposed about the height of the hydrothermal digestion unit.
Abstract:
Implementations of the disclosed subject matter provide a process for the aromatization of a methane-containing gas stream that includes contacting the methane-containing gas stream in a reaction zone of an aromatization reactor comprising an aromatization catalyst and a titanium alloy hydrogen acceptor under methane-containing gas aromatization conditions to produce a product stream comprising aromatics and hydrogen, wherein at least a portion of the produced hydrogen is bound by the titanium alloy hydrogen acceptor in the reaction zone and removed from the product and the reaction zone as titanium hydride, and wherein the titanium alloy hydrogen acceptor is a single phase alloy.
Abstract:
A composition comprising a base oil in an amount from 5 to 95 wt %, an ethylene vinyl acetate copolymer resin, and an ester-soluble tackifying resin; wherein the ethylene vinyl acetate copolymer resin is present in an amount from 5 to 95 wt % based on the total weight of the ethylene vinyl acetate copolymer resin and the ester-soluble tackifying resin is provided. Methods for assembling or lubricating turbine engines are also provided.
Abstract:
A surfactant composition, which comprises (i) an internal olefin sulfonate and (ii) an alkoxylated alcohol and/or alkoxylated alcohol derivative, wherein the alkoxylated alcohol and/or alkoxylated alcohol derivative is a compound of the formula (I) R—O—[PO]x[EO]y—X wherein R is a hydrocarbyl group which has a weight average carbon number of from 5 to 32, PO is a propylene oxide group, EO is an ethylene oxide group, x is the number of propylene oxide groups and is of from 0 to 40, y is the number of ethylene oxide groups and is of from 0 to 50, and the sum of x and y is of from 5 to 60; and wherein X is selected from the group consisting of: (i) a hydrogen atom; (ii) a group comprising a carboxylate moiety; (iii) a group comprising a sulfate moiety; and (iv) a group comprising a sulfonate moiety.
Abstract:
A method of increasing near-wellbore rock strength so as to mitigate or remediate lost circulation events through increased hoop stress in the near-wellbore in a subsurface formation comprises a) cooling a near-wellbore region of the formation, b) allowing a lost circulation material to enter the cooled near-wellbore region; and c) heating the near-wellbore region.
Abstract:
A process for facilitating the unloading of a fixed bed of cobalt/metal oxide catalyst particles from a reactor tube by (i) feeding a gas comprising 10 to 30 (vol/vol) percent of oxygen to the reactor tube with a GHSV for oxygen of 0.5 to 50 Nl/l/hr, and (ii) removing the catalyst particles from the reactor tube. In the fixed bed of catalyst particles to which the oxygen comprising gas is fed in step (i) at most 10 mole % of the element cobalt is present in Co3O4 and/or CoO, calculated on the total amount of moles of cobalt in the catalyst particles.
Abstract translation:一种用于通过(i)将含有10〜30(vol / vol)%的氧气的气体供给到具有用于氧气的GHSV的反应器管的方式,促进从反应器管卸载固定床的钴/金属氧化物催化剂颗粒的方法 0.5至50Nl / l / hr,和(ii)从反应器管中除去催化剂颗粒。 在步骤(i)中向其中供入含氧气体的催化剂颗粒的固定床中,至少10摩尔%的元素钴存在于Co 3 O 4和/或CoO中,以催化剂中钴的总摩尔数计算 粒子。
Abstract:
A method for digesting cellulosic biomass solids in a hydrothermal digestion unit comprises providing a reactor, a gas feed line, a system for feeding biomass into the reactor, a fluid circulation system including a fluid inlet, pump, and injector; providing a digestion medium containing a slurry catalyst in the digestion unit; circulating the digestion medium through the circulation system; supplying an upward flow of hydrogen through the biomass solids; and maintaining the biomass solids and catalyst at a temperature sufficient to cause digestion of cellulosic biomass solids into an alcoholic component; wherein the fluid inlet includes a stinger unit having an upper surface, an inner volume in communication with the catalyst circulation system, and an opening in the upper surface for allowing fluid to enter the inner volume; and allowing digestion medium to flow into the catalyst circulation system via the catalyst stinger.
Abstract:
A process that provides for the improvement of the properties of a distillate feedstock that has significant concentrations of nitrogen and polyaromatic compounds. The process includes a first reaction zone that uses a base metal catalyst and is operated under high pressure conditions to provide for the hydrodenitrogenation of organic nitrogen and saturation of polyaromatic compounds contained in the distillate feedstock. The first reaction zone treated effluent is separated into a heavy fraction and a lighter fraction with the heavy fraction being charged to a second reaction zone that also uses a base metal catalyst and is operated under high pressure conditions to provide for the saturation of monaromatic compounds that are contained in the heavy fraction. The inventive process provides for a high quality, low-sulfur and low-nitrogen diesel product that has a significantly lower aromatics content than the distillate feedstock and having a high value for its high Cetane Index.
Abstract:
Digesting cellulosic biomass solids in the presence of a well-distributed slurry catalyst capable of activating molecular hydrogen may limit the amount of degradation products that form during digestion. Methods for digesting cellulosic biomass solids can comprise: providing cellulosic biomass solids and a slurry catalyst in a hydrothermal digestion unit, the slurry catalyst being capable of activating molecular hydrogen; distributing the slurry catalyst within the cellulosic biomass solids using upwardly directed fluid flow in the hydrothermal digestion unit; heating the cellulosic biomass solids in the hydrothermal digestion unit in the presence of the slurry catalyst, a digestion solvent, and molecular hydrogen, thereby forming a liquor phase comprising soluble carbohydrates; and performing a first catalytic reduction reaction on the soluble carbohydrates within the hydrothermal digestion unit, thereby at least partially forming a reaction product comprising a triol, a diol, a monohydric alcohol, or any combination thereof in the hydrothermal digestion unit.