Abstract:
A surgical tool for deploying an implant includes an elongate outer shaft having a proximal end, a distal end and a central channel therebetween. An elongate inner shaft is at least partially slidably received in the central channel and an actuator mechanism is operatively coupled with either the outer or inner shaft. The tool also includes a piercing element that is coupled with the outer shaft and releasably coupled with the implant.
Abstract:
The invention comprises systems and methods determining residual stress such as that found in interferometric modulators. In one example, a test unit can be configured to indicate residual stress in a film by interferometrically modulating light indicative of an average residual stress in two orthogonal directions of the substrate. The test unit can include a reflective membrane attached to the substrate where membrane is configured as a parallelogram with at least a portion of each side attached to the substrate, and an interferometric cavity formed between a portion of the membrane and a portion of the substrate, and where the membrane is configured to deform based on the residual stress of in the film and modulate light indicative of the amount of membrane deformation.
Abstract:
An interferometric mask covering the front electrodes of a photovoltaic device is disclosed. Such an interferometric mask may reduce reflections of incident light from the electrodes. In various embodiments, the mask reduces reflections so that a front electrode pattern appears similar in color to adjacent regions of visible photovoltaic active material.
Abstract:
Spinous process constraint structures include a first attachment element for placement over a first spinous process and a second attachment element for placement over a second spinous process. The attachment elements are joined by a single connector which may optionally include a compliance member for providing controlled elasticity between the spinous processes.
Abstract:
A microelectromechanical systems (MEMS) display element may include a photovoltaic structure configured to generate electric energy from incident light. In one embodiment, the display element includes a first layer that is at least partially transmissive of light, a second layer that is at least partially reflective of light, and a photovoltaic element that is formed on the first layer or the second layer or formed between the first layer and the second layer. The second layer is spaced from the first layer and is selectably movable between a first position in which the display element has a first reflectivity and a second position in which the display element has a second reflectivity. The first reflectivity is greater than the second reflectivity. The photovoltaic element is at least partially absorptive of light and is configured to convert a portion of the absorbed light into electric energy, at least when the second layer is in the second position.
Abstract:
A system and method for an optical component that masks non-active portions of a display and provides an electrical path for one or more display circuits. In one embodiment an optical device includes a substrate, a plurality of optical elements on the substrate, each optical element having an optical characteristic which changes in response to a voltage applied to the optical element, and a light-absorbing, electrically-conductive optical mask disposed on the substrate and offset from the plurality of optical elements, the optical mask electrically coupled to one or more of the optical elements to provide electrical paths for applying voltages to the optical elements. In another embodiment, a method of providing an electrical signal to optical elements of a display comprises electrically coupling an electrically-conductive light-absorbing mask to one or more optical elements, and applying a voltage to the mask to activate the one or more optical elements.
Abstract:
Methods of fabricating an electromechanical systems device that minimize critical dimension (CD) loss in the device are described. The methods provide electromechanical systems devices with improved properties, including high reflectivity.
Abstract:
Methods and systems for packaging MEMS devices such as interferometric modulator arrays are disclosed. One embodiment of a MEMS device package structure includes a seal with a chemically reactant getter. Another embodiment of a MEMS device package comprises a primary seal with a getter, and a secondary seal proximate an outer periphery of the primary seal. Yet another embodiment of a MEMS device package comprises a getter positioned inside the MEMS device package and proximate an inner periphery of the package seal.
Abstract:
A plurality of dichroic filters are included in multifunction photovoltaic cells to increase efficiency. For example, in a multi-junction photovoltaic cell comprising blue, green, and red active layers, blue, green, and red dichroic filters that reflect blue, green, and red light, respectively, may be disposed proximal to the blue, green, and red active layers to reflect back light not absorbed on the first past. The dichroic filters may be used to demultiplex white light incident on the PV cell and deliver suitable wavelengths to the appropriate active layer, e.g., blue wavelengths to the blue active layer, green wavelengths to the green active layer, red wavelengths to the red active layer. The PV cell may additionally be interferometrically tuned to increase absorption efficiency. Accordingly, optical resonant layers and cavities may be employed in certain embodiments.
Abstract:
Certain embodiments of the invention provide a light sensor comprising at least one interferometric element that absorbs light in at least one wavelength. The interferometric element comprises a first surface and a second surface substantially parallel to the first surface. The second surface is spaced a gap distance from the first surface in a direction substantially perpendicular to the first surface. The light wavelength absorbed is dependent on the gap distance. The interferometric element further comprises a temperature sensor. The temperature sensor is responsive to changes in temperature of at least a portion of the interferometric element due to absorption of light by the interferometric element.