Abstract:
A gas turbine engine comprises a gear train defined along an axis. A spool along the axis drives the gear train and includes a low stage count low pressure turbine. A fan i s rotatable at a fan speed about the axis and driven by the low pressure turbine through the gear train. The fan speed is less than a speed of the low pressure turbine. A core is surrounded by a core nacelle defined about the axis. A fan nacelle i s mounted at least partially around the core nacelle to define a fan bypass airflow path for a fan bypass airflow. A bypass ratio defined by the fan bypass passage airflow divided by airflow through the core is greater than about ten (10).
Abstract:
A gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a fan section including a fan with a plurality of fan blades rotatable about an axis. Each of the plurality of fan blades includes a mid-span shroud and a speed change device in communication with the fan.
Abstract:
A gas turbine engine includes a flex mount for a fan drive gear system. A very high speed fan drive turbine drives the fan drive gear system.
Abstract:
A gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a fan and a braking system. The braking system is configured to selectively engage the fan during ground windmilling to apply a first level of braking to slow rotation of the fan. Further, when the rotation of the fan sufficiently slows, the braking system is further configured to apply a second level of braking more restrictive than the first level of braking.
Abstract:
A heat exchanger (HEX) for cooling air in a gas turbine engine is provided. An adjustable damper is provided. The adjustable damper may be for damping a movement of the HEX relative to the gas turbine engine. An adjustable damper may comprise: a first tube; a second tube located at least partially within the first tube; a housing coupled to the second tube; a moveable member, the moveable member comprising a contacting surface in contact with the second tube; an adjusting member adjustably coupled to the housing; and a spring member located between the moveable member and the adjusting member, the spring member configured to at least one of compress or decompress in response to adjusting member moving relative to the housing.
Abstract:
A bowed rotor start mitigation system for a gas turbine engine of an aircraft is provided. The bowed rotor start mitigation system includes a motoring system and a controller coupled to the motoring system and an aircraft communication bus. The controller is configured to determine at least one inferred engine operating thermal parameter based on at least one aircraft-based parameter received on the aircraft communication bus, where the at least one inferred engine operating thermal parameter is based on data describing a history of the aircraft before an engine shutdown. The motoring system is controlled to drive rotation of a starting spool of the gas turbine engine below an engine idle speed based on determining that the at least one inferred engine operating thermal parameter is within a preselected range.
Abstract:
A gas turbine engine includes a main compressor section and a turbine section. The turbine section has a first turbine blade and vane and a downstream turbine component. A tap is configured to tap air from the compressor section at a location upstream of a most downstream location. The tap is connected to a heat exchanger. The heat exchanger is connected to a cooling compressor. The cooling compressor is connected to the downstream turbine component. A second tap is configured to tap air from a location in the main compressor section. The second tap is connected through a check valve to a line leading to the downstream turbine component. A control operates the cooling compressor such that when the cooling compressor is operating, air downstream of the cooling compressor is at a pressure higher than the pressure of the second tap, and the control is operational to selectively drive the cooling compressor at high power operation of an associated gas turbine engine, and to stop operation of the cooling compressor at lower power operations, such that air is delivered through the cooling compressor to the downstream turbine component at the high power operations, and air is delivered from the second tap at least some time when the cooling compressor is not operational. A method is also disclosed.
Abstract:
A lower pressure tap is connected to a first heat exchanger to be cooled by cooling air, and then to a selection valve. The selection valve selectively delivers the lower pressure tap air to a boost compressor. The lower pressure tap air downstream of the boost compressor is connected to cool the at least one turbine. The selection valve also selectively delivers a portion of the lower pressure tap air across a first cooling turbine, and to a line associated with an air delivery system for a cabin on an associated aircraft. A portion of the air downstream of the first cooling turbine is connected to a second cooling turbine, and air downstream of the second cooling turbine is connected for use in a cold loop A method of operating an air supply system is also disclosed.
Abstract:
A gas turbine engine comprises a fan rotor having fan blades received within an outer nacelle. The fan blades are provided with at least a first type having a first natural frequency, and a second type having a second natural frequency. The fan rotor has a first mount structure intended for the first type and a distinct second mount structure intended for the second type. The first type of fan blade fits into the first mount structure intended for the first type, but there is a first obstruction preventing the first type of fan blade from being placed into the second mount structure intended for the second type. The second type of fan blade fits into the second mount structure intended for the second type, but there is a second obstruction preventing the second type of fan blade from being placed into the first mount structure intended for the first type.
Abstract:
A turbofan engine may comprise an inlet and a fan case coupled to the inlet. An engine case may be coupled to the fan case via a vane extending between the fan case and the engine case. A strut apparatus may extend from the fan case and limit deflection of the fan case. The strut apparatus may comprise a first end proximate the fan case, and a second end coupled to at least one of the engine case or a structure for mounting the turbofan engine to an aircraft.