Abstract:
A heat pipe is provided having an enclosed vapor chamber and a wick disposed within the vapor chamber. The wick comprises a plurality of lands having a thickness and a plurality of vents formed between the lands, wherein each vent includes a layer of wick having a thickness that is less than the thickness of the lands.
Abstract:
In a method for producing an R—Fe—B based rare-earth sintered magnet according to the present invention, first, provided is an R—Fe—B based rare-earth sintered magnet body including, as a main phase, crystal grains of an R2Fe14B type compound that includes a light rare-earth element RL, which is at least one of Nd and Pr, as a major rare-earth element R. Thereafter, the sintered magnet body is heated while a heavy rare-earth element RH, which is at least one element selected from the group consisting of Dy, Ho and Tb, is supplied to the surface of the sintered magnet body, thereby diffusing the heavy rare-earth element RH into the rare-earth sintered magnet body.
Abstract:
Disclosed are methods of making multi-element, finely divided, alloy powders containing silver and at least two non-silver containing elements and the uses of these powders in ceramic piezoelectric devices.
Abstract:
The present teachings are directed methods of producing tungsten-containing nanoparticles, specifically tungsten nanoparticles and tungsten oxide nanoparticles with an average particle size of less than about five nanometers.
Abstract:
A process including: (a) forming a powder blend by mixing titanium powders, (b) consolidating the powder blend by compacting to provide a green compact, (c) heating the green compact thereby releasing absorbed water from the titanium powder, (d) forming β-phase titanium and releasing atomic hydrogen from the hydrogenated titanium by heating the green compact in an atmosphere of hydrogen emitted by the hydrogenated titanium, (e) reducing surface oxides on particles of the titanium powder with atomic hydrogen released by heating of the green compact, (f) diffusion-controlled chemical homogenizing of the green compact and densification of the green compact by heating followed by holding resulting in complete or partial dehydrogenation to form a cleaned and refined compact, (g) heating the cleaned and refined green compact in vacuum thereby sintering titanium to form a sintered dense compact, and (h) cooling the sintered dense compact to form a sintered near-net shaped article.
Abstract:
An ultra-hard composite material and a method for manufacturing the same, including mixing a metal carbide powder and a multi-element high-entropy alloy powder to form a mixture, green compacting the mixture, and sintering the mixture to form the ultra-hard composite material. The described multi-element high-entropy alloy consists of five to eleven principal elements, with every principal element occupying a 5 to 35 molar percentage of the alloy.
Abstract:
At least one embodiment of the inventive technology focuses on a new composition that comprises hexagonally close packed molybdenum carbide crystals, in addition to metallic nickel crystals and/or sodium, and having use as a catalyst in a Fischer-Tropsch process to produce alcohol. At least one embodiment of a related aspect of the inventive technology is a Fischer-Tropsch reaction to produce alcohols from carbon monoxide and hydrogen using the aforementioned composition to catalyze reactions producing higher alcohols.
Abstract:
The invention relates to a process for producing sinterable molybdenum metal powder in a moving bed, sinterable molybdenum powder and its use.
Abstract:
A process for producing ferrous sintered alloy according to the present invention is characterized in that it is equipped with: a compaction step of pressure compacting a raw-material powder in which an Fe-system powder is mixed with a reinforcement powder, thereby turning the raw-material powder into a powder compact; and a sintering step of heating this powder compact in an oxidation preventive atmosphere, thereby sintering the powder compact; and said reinforcement powder is an Fe—Mn—Si—C powder comprising an Fe alloy or an Fe compound that includes: Mn in an amount of from 58 to 70%; Si in an amount making a compositional ratio of the Mn with respect to the Si (i.e., Mn/Si) that is from 3.3 to 4.6; and C in an amount of from 1.5 to 3%; when the entirety is taken as 100% by mass. This Fe—Mn—Si—C powder is procurable inexpensively relatively; besides, ferrous sintered alloys, which are obtained using that, are better in terms of various characteristics than are conventional ferrous sintered alloys. Therefore, it is possible to intend to turn Cu-free ferrous sintered alloys, which are good in terms of their own characteristics, into low-cost ones.
Abstract:
A method for producing a metal article may include: Producing a supply of a composite metal powder by: providing a supply of molybdenum metal powder; providing a supply of a sodium compound; combining the molybdenum metal powder and the sodium compound with a liquid to form a slurry; feeding the slurry into a stream of hot gas; and recovering the composite metal powder; and consolidating the composite metal powder to form the metal article, the metal article comprising a sodium/molybdenum metal matrix. Also disclosed is a metal article produced accordance with this method.