Abstract:
A process for the preparation of supported metallocene-alumoxane catalysts comprising the steps of: a) reacting a metallocene with an alumoxane at a temperature comprised between 15 and 50° C., b) recovering a mixture comprising an alkylmetallocenium cation and an anionic alumoxane oligomer, c) reacting said mixture with a support, and d) recovering a supported metallocene-alumoxane catalyst as a dry solid, the reaction with the support being carried out at a temperature comprised between 85° C. and 110° C., preferably between 90 and 130° C., and their use for the polymerization or copolymerization of olefins.
Abstract:
This description addresses a process for the preparation of polyolefins from one or more olefinic monomers comprising combining said olefins under olefin polymerization conditions with an organometallic catalyst compound that is activated for olefin polymerization by reaction with a Group 13 element cocatalyst complex comprising at least one halogenated, nitrogen-containing aromatic group ligand. High number-average molecular weight polymers and copolymers at high rates of productivity were observed from the use of metallocene catalysts complexes when activated with [(C6H5)3C][(C6F5)3B(C5F4N)].
Abstract translation:该描述涉及从一种或多种烯烃单体制备聚烯烃的方法,其包括在烯烃聚合条件下将所述烯烃与通过与包含至少一种卤代,烷氧基的组合的13族元素助催化剂络合物反应而进行烯烃聚合的有机金属催化剂化合物, 含氮芳族基团配体。 当用[(C 6 H 5)3 C] [(C 6 F 5)3 C(C 5 F 4 N)]活化时,使用茂金属催化剂络合物观察到高生产率的高数均分子量聚合物和共聚物。
Abstract:
The process of preparing polyolefins using rac ansa-metallocene metal amide complexes directly by use of aluminum alkyl in combination with a cocatalyst.
Abstract:
A composition, comprising (a) a compound of formula I (R1R2R3P)xLyM2+Z1−Z2− (I), wherein R1, R2 and R3 are each independently of one another H, C1-C20alkyl, C1-C20-alkoxy; C4-C12cycloalkyl which is unsubstituted or substituted by C1-C6-alkyl, C1-C6haloalkyl or C1-C6alkoxy; C4-C12cycloalkoxy which is unsubstituted or substituted by C1-C6-alkyl, C1-C6haloalkyl or C1-C6alkoxy; C6-C16aryl which is unsubstituted or substituted by C1-C6alkyl, C1-C6haloalkyl or C1-C6alkoxy; C6-Cl6aryloxy which is unsubstituted or substituted by C1-C6alkyl, C1-C6haloalkyl or C1-C6alkoxy; C7-C16-aralkyloxy which is unsubstituted or substituted by C1-C6alkyl, C1-C6haloalkyl or C1-C6alkoxy; or C7-C16aralkyloxy which is unsubstituted or substituted by C1-C6alkyl, C1-C6-haloalkyl or C1-C6alkoxy; or R2 and R3 together are tetra- or pentamethylene which is unsubstituted or substituted by C1-C6alkyl, C1-C6haloalkyl or C1-C6alkoxy; tetra- or pentamethylenedioxyl which is unsubstituted or substituted by C1-C6alkyl, C1-C6haloalkyl or C1-C6alkoxy; tetra- or pentamethylene which is condensed with one or two 1,2-phenylene radicals and which is unsubstituted or substituted by C1-C6alkyl, C1-C6haloalkyl or C1-C6alkoxy; tetra- or pentamethylenedioxyl which is condensed with one or two 1,2-phenylene radicals and which is unsubstituted or substituted by C1-C6alkyl, C1-C6haloalkyl or C1-C6alkoxy; or tetramethylenedioxyl which is condensed in the 1,2- and 3,4-positions with 1,2-phenylene and which is unsubstituted or substituted by C1-C6alkyl, C1-C6haloalkyl or C1-C6alkoxy; and R1 has the meaning cited above; L is a neutral ligand; M is Ru or Os; Z1− and Z2− are each a singly charged anion, or Z1− and Z2− together are a doubly charged anion; x is a number from 1 to 3, and y is a number from 0 to 3, wherein 2≦x+y ≦4; and (b) a compound of formula II R4—C≡C—H (II), wherein R4 is hydrogen or a monovalent organic radical of up to 30 carbon atoms which may contain one or several silicon, phosphorus, nitrogen, oxygen, sulfur or halogen atoms, is suitable as storage-stable two-component catalyst for the ring-opening metathesis polymerisation of cyclopentadiene adducts and makes it possible to polymerise dicyclopentadiene and other cydopentadiene adducts within a short time and with high enthalpy of reaction and only little weight loss.
Abstract:
Metal complexes comprising a polydentate chelating group, catalysts and polymerization processes using the same for the polymerization of olefins, especially propylene, are disclosed.
Abstract:
The instant invention provides a late transition metal complex which can be used with an activating cocatalyst to produce polymers and copolymers. The invention also provides methods for polymerizing olefins, as well as copolymers having polar monomers incorporated therein. More specifically, the invention provides a composition having the formula LMXZn, wherein M is selected from the group consisting of Cu, Ag and Au; X is selected from the group consisting of halide, hydride, triflate, acetate, borate, C1 through C12 alkyl, C1 through C12 alkoxy, C3 through C12 cycloalkyl, C3 through C12 cycloalkoxy, aryl, thiolate, nitrate, sulfate, nitrile, hydroxide and any other moiety into which a monomer can insert; Z is selected from the group consisting of halide, hydride, triflate, acetate, borate, C1 through C12 alkyl, C1 through C12 alkoxy, C3 through C12 cycloalkyl, C3 through C12 cycloalkoxy, aryl, thiolate, carbon monoxide, nitrate, nitrile, hydroxide, sulfate, olefins, water, any other neutral coordinating ligand and any other moiety into which a monomer can insert; n equals 0, 1 or 2; and L is a multi-dentate nitrogen-containing ligand.
Abstract:
The present invention relates to a process for manufacturing polyolefin polymerization catalysts and provides a process for manufacturing polyolefin polymerization catalysts, wherein after manufacturing a homogeneous solution of magnesium compounds using magnesium compounds and alcohols along with hydrocarbon solvents and contacting with titanium compounds by adding organic aluminum, the mixture is treated again with organic aluminum or alcohols having 5 or less carbon atoms, then contacted with titanium compounds. Polyolefin polymerization catalysts prepared by the preparation process of the present invention have superior polyolefin polymerization activities, they prepare polymers having high Melt Flow Ratios, and produce a lesser amount of fine particle polymers.
Abstract:
The present invention relates to a solid complex titanium catalyst for homo-polymerization and co-polymerization of &agr;-olefin, obtained by (i) producing a solution of a magnesium compound by dissolving a magnesium compound and a compound of IIIA Group of the Periodic Table in a solvent mixed with cyclic ether, one or more types of alcohol, a phosphorous compound, and an organosilane, (ii) precipitating the solid particles by reacting said magnesium solution with a compound of a transition metal, a silicon compound, or the mixture thereof, and (iii) reacting said precipitated solid particles with a titanium compound and an electron donor. The catalyst of the present invention is of large particle size, narrow particle distribution, and high catalytic activity, while the polymers obtained with the use of this catalyst are of excellent stereoregularity.
Abstract:
The present invention provides a novel phosphine compound, specifically to provide a novel phosphine compound useful as a ligand for the above catalysts, in particular, a novel catalyst having an excellent performance (chemical selectivity, enantio-selectivity, catalytic activity) as a catalyst for asymmetric synthetic reactions, particularly asymmetric hydrogenation. A diphosphine compound represented by the general formula (1): wherein R1 and R2 each independently represents a lower alkyl group, a cycloalkyl group, an unsubstituted or substituted phenyl group, or a five-membered heteroaromatic ring residue.
Abstract:
A particulate, modified chromium oxide catalyst for the polymerisation of ethylene or ethylene with &agr;-olefins, comprising: a) a chromium-oxide catalyst, b) a transition metal compound, and c) a catalyst activator. A method for the preparation of the catalyst comprises the steps of: a) subjecting a chromium oxide catalyst precursor, which comprises a chromium oxide compound combined with an inorganic support, to a temperature in the range of from 400 to 950° C. under oxidising conditions, and b) impregnating the obtained chromium catalyst with a catalyst activator and with a transition metal compound which comprises at least one cyclopentadienylic ring bonded to said transition metal and at least ligand selected from the group comprising alkoxy, amido and hydrocarbyl radicals, halogen and hybride bonded to said transition metal, which cyclopentadienylic ring may contain hetero atoms, be unsubstituted or substituted, be bonded to said transition metal through a bridge, and optionally annealed to other substituted or unsubstituted ring structures, and if two cyclopentadienyl rings are present they may be bonded to each other through a bridge, and c) subjecting the thus obtained particulate catalyst to drying conditions. This catalyst is suitable for producing polyethylenes under conditions of continuous feeding of all reactants.