Abstract:
A method and apparatus for allocating resources to a wireless transmit receive unit (WTRU) includes the WTRU transmitting a signature sequence to a Node B, receiving an acknowledge signal from the Node B, and determining a default resource index. The resource index is associated with enhanced dedicated channel (E-DCH) parameters.
Abstract:
A method and an apparatus for utilizing multiple carriers are disclosed. A wireless transmit/receive unit (WTRU) capable of receiving on a single downlink carrier at a time may tune the receiver to one downlink carrier and switch the downlink carrier in accordance with a configured pattern. The WTRU may switch the carrier from an anchor carrier to a non-anchor carrier at a high speed shared control channel (HS-SCCH) sub-frame boundary, and switches back at an end of a subsequent high speed physical downlink shared channel (HS-PDSCH) subframe. The WTRU may switch the carrier at an HS-PDSCH sub-frame boundary. A WTRU capable of receiving on multiple downlink carriers simultaneously may tune the receiver to an anchor carrier and a supplementary carrier, and switch the supplementary carrier to another carrier based on a carrier switching order. The carrier switching order may be received via an HS-SCCH or via layer 2 signaling.
Abstract:
Techniques for transmit power control for multiple antenna transmissions in an uplink are disclosed. A wireless transmit/receive unit (WTRU) generates at least one input stream for transmission and applies a gain factor to each channel. The gain factor is determined based on a reference channel power estimate. The WTRU generates at least two data streams from the input stream for transmission via a plurality of antennas and applies weights to the data streams. The gain factor and/or the weights are controlled such that a transmit power on each antenna is within a maximum allowed value. The WTRU may perform power scaling on a condition that a transmit power on any antenna exceeds the maximum allowed value. The WTRU may scale down an enhanced dedicated channel (E-DCH) dedicated physical data channel (E-DPDCH) first before other channels. For multiple E-DCH streams, the WTRU may calculate an E-DPDCH power offset based on an additional power offset factor due to multiple stream transmission.
Abstract:
Systems, methods, and instrumentalities are disclosed to manage interference caused by D2D communications. A wireless transmit receive unit (WTRU) may include a processor. The processor may be configured to perform one or more of the following. The processor may determine to send information using a device-to-device transmission via a resource pool from a plurality of resource pools. Each resource pool may be associated with a range of reference signal receive power (RSRP) values. The processor may determine a RSRP measurement of a cell associated with the WTRU. The processor may select a resource pool from the plurality of resource pools based on the RSRP measurement of the cell. The RSRP measurement of the cell may be within the range of RSRP values associated with the selected resource pool. The processor may send the information using the selected resource pool.
Abstract:
Methods and apparatus for effecting power control as well as frequency and timing synchronization in an LTE component carrier functioning in UL-only mode or device-to-device mode, including a UL-only cell in LTE, as well as an new enabling Special Uplink Reference Signal (SURS) that is used to determine the UEs that can take advantage of a UL-only cell. One approach includes interrupting the UL-only operation in a periodic fashion to send a sync signal by the eNB. Another approach includes sending a well know synchronization sequence by the UEs in a periodic fashion, which the eNB compares with its own local frequency reference and sends feedback to the UE to readjust the frequency. Another approach uses dedicated subcarriers where the eNB can send synchronization symbols on the same channel and simultaneously with data being transmitted in the uplink. The UEs transmitting in the UL direction are equipped to receive simultaneously the synchronization symbols on these dedicated subcarriers.
Abstract:
A method and an apparatus for simultaneously receiving on two carriers and performing discontinuous transmission (DTX) and discontinuous reception (DRX) in dual cell high speed downlink packet access (DC-HSDPA) are disclosed. A wireless transmit/receive unit (WTRU) receives a message for activating DRX for at least one of an anchor carrier and a supplementary carrier and applies the same DRX pattern to the anchor carrier and the supplementary carrier upon reception of the message. The message may be received via a high speed shared control channel (HS-SCCH) order. The WTRU may activate or de-activate the supplementary carrier based on the physical layer signal. Upon activation of the supplementary carrier, the WTRU may apply the same DRX pattern on both the anchor carrier and the supplementary carrier. The WTRU may flush a hybrid automatic repeat request (HARQ) buffer associated with the supplementary carrier upon de-activation of the supplementary carrier.
Abstract:
Systems and method for uplink feedback for multipoint transmission of high-speed downlink packet access (MP-HSDPA) that may improve downlink transmission efficiency and cell coverage. For example, Channel Quality Indicator (CQI) and/or Precoding Control Indicator (PCI) that may be calculated to accommodate the needs of coordinated dynamic network scheduling. Additionally, various frame structures may be generated for the uplink feedback that may carry multiple CQI and HARQ-ACK feedbacks from MP-HSDPA. The frame structures may also address asynchronous downlink transmissions between two cells. Moreover, HS-DPCCH power offset settings for both CQI and HARQ-ACK fields that may be modified and/or created to ensure reliable uplink feedback transmission.
Abstract:
A method for use in a wireless transmit/receive unit (WTRU) for receiving data over physical downlink shared channels from different cells, monitoring physical downlink control channels of a first cell for downlink control information associated with the WTRU, and recovering data from the physical downlink control channel in response to the downlink control information.
Abstract:
A method and an apparatus for utilizing multiple carriers are disclosed. A wireless transmit/receive unit (WTRU) capable of receiving on a single downlink carrier at a time may tune the receiver to one downlink carrier and switch the downlink carrier in accordance with a configured pattern. The WTRU may switch the carrier from an anchor carrier to a non-anchor carrier at a high speed shared control channel (HS-SCCH) sub-frame boundary, and switches back at an end of a subsequent high speed physical downlink shared channel (HS-PDSCH) subframe. The WTRU may switch the carrier at an HS-PDSCH sub-frame boundary. A WTRU capable of receiving on multiple downlink carriers simultaneously may tune the receiver to an anchor carrier and a supplementary carrier, and switch the supplementary carrier to another carrier based on a carrier switching order. The carrier switching order may be received via an HS-SCCH or via layer 2 signaling.
Abstract:
A method and an apparatus for utilizing multiple carriers are disclosed. A wireless transmit/receive unit (WTRU) capable of receiving on a single downlink carrier at a time may tune the receiver to one downlink carrier and switch the downlink carrier in accordance with a configured pattern. The WTRU may switch the carrier from an anchor carrier to a non-anchor carrier at a high speed shared control channel (HS-SCCH) sub-frame boundary, and switches back at an end of a subsequent high speed physical downlink shared channel (HS-PDSCH) subframe. The WTRU may switch the carrier at an HS-PDSCH sub-frame boundary. A WTRU capable of receiving on multiple downlink carriers simultaneously may tune the receiver to an anchor carrier and a supplementary carrier, and switch the supplementary carrier to another carrier based on a carrier switching order. The carrier switching order may be received via an HS-SCCH or via layer 2 signaling.