Abstract:
An apparatus for detecting an in-cylinder pressure of an engine is provided. The apparatus comprises an in-cylinder pressure sensor for outputting a signal indicating a change rate of an in-cylinder pressure and a control unit. The control unit is configured to correct the signal from the in-cylinder pressure sensor, integrate the corrected signal to determine the in-cylinder pressure, determine a change rate of a drift contained in the determined in-cylinder, and feedback the change rate of the drift so that the correction of the signal is made with the change rate of the drift. Since the output of the in-cylinder pressure sensor from which a drift has been removed is integrated, it is prevented that a drift appears in the in-cylinder pressure obtained by the integral. A resetting operation is not required so as to remove a drift.
Abstract:
A method and an apparatus for predicting intake manifold pressure are presented, to compensate for a large lag or a large time delay without producing an overshot or discontinuous behaviors of a predicted value. The method comprises the step of obtaining a difference of values of a variable to be predicted and a difference of values of another variable ahead of the variable to be predicted. The method further comprises the step of filtering the differences with adaptive filters. The method further comprises the step of obtaining a predicted difference of values of the variable to be predicted, through algorithm of estimation with fuzzy reasoning. The method further comprises the step of adding the predicted difference of values of the variable to be predicted, to a current value of the variable to be predicted, to obtain a predicted value of the variable to be predicted.
Abstract:
A controller which is capable of maintaining stability of a control system even if the dynamic characteristic of a controlled object temporarily changes sharply in the case where a controlled object model is used. An ECU of the controller calculates a first disturbance estimate by carrying out a low-pass filtering process and a rate limiting process on a first estimation error as the difference between a fuel pressure estimate calculated with an estimation algorithm and a fuel pressure. Then, the ECU calculates a second disturbance estimate based on a second estimation error as the difference between the first estimation error and the first disturbance estimate, with a predetermined disturbance estimation algorithm. Further, the ECU calculates a fuel pressure control input based on the fuel pressure and the first and second disturbance estimates, with a predetermined control algorithm.
Abstract:
In a temperature control system of a plant such as an engine exhaust system, there are provided a catalyst heat model calculating a temperature estimated value of the plant, a temperature sensor model inputting the calculated value to calculate an output estimated value of a temperature sensor, a temperature controller controlling the plant temperature based on the estimated value, and a model parameter corrector correcting the plant model parameter so as to minimize error between the temperature sensor output and the calculated output estimated value. With this, even in the case where the temperature sensor has a large response lag, the temperature estimated value can nevertheless be corrected with high accuracy, without, for example, causing severe overshooting.
Abstract:
An air/fuel ratio control apparatus an internal combustion engine, and an engine control unit are provided for conducting perturbation control to maintain a satisfactory exhaust gas purification percentage irrespective of whether or not a catalyst is deteriorated. The air/fuel ratio control apparatus for an internal combustion engine includes an ECU, and a LAF sensor and an O2 sensor disposed at locations upstream and downstream of a first catalyst, respectively, in an exhaust pipe. The ECU sets a target air/fuel ratio for converging the output of the O2 sensor to a predetermined target value such that it fluctuates over a predetermined amplitude at a predetermined frequency higher when the output of the O2 sensor remains near a predetermined target value than when it is not near the predetermined target value. The ECU also controls an air/fuel ratio to match the output of the LAF sensor with the target air/fuel ratio KCMD.
Abstract:
A control apparatus for controlling an object that is modeled using at least one model parameter is provided. The control apparatus comprises an identifier, a controller and a modulator. The identifier identifies the model parameter. The controller is coupled to the identifier and uses the model parameter to determine a reference input so that an output of the object converges to a desired value. The modulator is coupled to the controller and applies any one of a delta-sigma modulation algorithm, a sigma-delta modulation algorithm and a delta modulation algorithm to the reference input to determine an input into the object. The model parameter is identified based on the output of the object and the reference input. Since the identifier determines the model parameter based on the reference input, the model parameters is prevented from vibrating.
Abstract:
A control system for a plant is provided. This control system can control the plant more stably, when the model parameters of the controlled object model which are obtained by modeling the plant, which is a controlled object, are identified and the sliding mode control is performed using the identified model parameters. The model parameter identifier (22) calculates a model parameter vector (θ) by adding an updating vector (d θ) to a reference vector (θ base) of the model parameter. The updating vector (d θ) is corrected by multiplying a past value of at least one element of the updating vector by a predetermined value which is greater than “0” and less than “1”. The model parameter vector (θ) is calculated by adding the corrected updating vector (d θ) to the reference vector (θ base).
Abstract:
An in-cylinder pressure sensor for outputting a signal corresponding to an internal cylinder pressure of an engine is provided. A first signal and a second signal are extracted from the output signal of the in-cylinder pressure sensor. The first signal has a frequency band corresponding to knocking of the engine. The second signal has a frequency band used for detecting a peak of the internal cylinder pressure. A knocking detection period is set based on the second signal. The first signal in the knocking detection period is examined to determine whether or not knocking has occurred.
Abstract:
An air-fuel ratio control system for an internal combustion engine, which is capable of quickly and properly eliminating variation in air-fuel ratio between a plurality of cylinders. The air-fuel ratio control system 1 controls the amount of fuel to be supplied to first to fourth cylinders #1 to #4, on a cylinder-by-cylinder basis, thereby controlling the air-fuel ratio of a mixture supplied to each of the cylinders. A LAF sensor 14 delivers to an ECU 2 an output KACT indicative of the air-fuel ratio of exhaust gases emitted from the cylinders and merged. A cycle filter 23a and a rotation filter 23b filters the output KACT from the LAF sensor 14 such that components in respective bands of a first frequency fr1 and a second frequency fr2 are allowed to pass therethrough. A final fuel injection amount TOUTi is determined, on a cylinder-by-cylinder basis, according to a first filtered value KACT_Fc or a second filtered value KACT_Fr such that the amplitude of the filtered value KACT_Fc or KACT_Fr converges to a predetermined value.
Abstract:
A control system which controls a control amount via a movable mechanism, such that it is possible to reduce impact occurring when a movable part of the movable mechanism is driven to a limit of the movable range, and time required for the driving, in a compatible manner. An ECU 2 of a control system 1 calculates, when Liftin