Abstract:
In a stator for a starter motor including an approximately cylindrical yoke, poles disposed inside the yoke, and field windings wound around the poles, the yoke is formed of a plurality of cylindrical cores having a different diameter and stacked in a radial direction to reduce the manufacturing cost of the yoke.
Abstract:
A brushless DC motor minimizes a chance of dislocation of or damage to an insulator used in the brushless DC motor. Slant portions are provided at end portions of the insulator; therefore, even if a nozzle of a machine for installing a winding should hit the insulator while moving between teeth, the insulator moves in a direction for coming in close contact with a slot aperture, i.e., in a direction substantially at right angles to a direction in which the nozzle moves. This arrangement prevents the insulator from moving by being pushed by the nozzle, making it possible to minimize a chance of occurrence of an insulation failure caused by a damaged or dislocated insulator.
Abstract:
A method of manufacturing an elongate stack of interlocked laminae in a die assembly. The method includes the steps of stamping a first lamina having generally opposed first and second edges in the strip stock material, stamping at least one first interlock means for engaging another lamina in the first lamina, separating the first lamina from the strip stock material, placing the first lamina into the choke passageway, the first and second edges of the first lamina frictionally engaging the choke passageway, stamping a second lamina having first and second elongate edges in the strip stock material, stamping at least one second interlock means for engaging another lamina in the second lamina, at least partially engaging the first and second interlocking means, separating the second lamina from the strip stock material, placing the second lamina into the choke passageway, and frictionally engaging the choke passageway along the first and second elongate edges of only one of the first and second laminae.
Abstract:
A rotor structure for a permanent-magnet motor is disclosed as including an annular laminated stack (2) of electromagnetic steel sheets incorporating magnets, annular end plates (1a, 1b) located at both ends of the annular laminated stack to hold the same, a cylindrical core buck (3) carrying thereon the annular laminated stack and the annular end plates, and a rotor shaft (5) integrally connected to the cylindrical core buck for rotating movement. The annular laminated stack has a plurality of first fixing portions (8a, 8anull, 8anull; 8b, 8bnull, 8bnull), and each of the annular end plates has a plurality of second fixing portions (7a, 7anull, 7anull; 7b, 7bnull, 7bnull) which are held in engagement with the first fixing portions of the annular laminated stack, with the annular end plates and the annular laminated stack being fixed to one another by caulking at the first and second fixing portions.
Abstract:
In a stator for a starter motor including an approximately cylindrical yoke, poles disposed inside the yoke, and field windings wound around the poles, the yoke is formed of a plurality of cylindrical cores having a different diameter and stacked in a radial direction to reduce the manufacturing cost of the yoke.
Abstract:
A laminated core of a motor in which vibrations of core plates causing motor noise is restrained at a low cost; a method of manufacturing such a laminated core; a motor having such a laminated core; and an ink-jet recording apparatus having such a motor. In a laminated core (1) of a motor in which a plurality of core pieces (10) are laminated on each other and which has magnetic poles (13) each having a roughed surface of mountain portions (13a) and groove portions (13b) formed alternately in the direction of rotation of the motor, welded portions (31) for firmly fixing the core pieces (10) to each other are provided in the surface of one of the groove portions (13b) formed in the vicinities of the central portion of each magnetic pole (13) in the direction of rotation. Each welded portion (31) is formed continuously in the direction of lamination of the core pieces (10). Each welded portion (31) is formed by welding the surface of the groove portion (13b). By these welded portions (31), the core pieces (10) are firmly fixed to each other in the surface portions of the magnetic pole portions (13).
Abstract:
A laminated core of a motor in which vibrations of core plates causing motor noise is restrained at a low cost; a method of manufacturing such a laminated core; a motor having such a laminated core; and an ink-jet recording apparatus having such a motor. In a laminated core (1) of a motor in which a plurality of core pieces (10) are laminated on each other and which has magnetic poles (13) each having a roughed surface of mountain portions (13a) and groove portions (13b) formed alternately in the direction of rotation of the motor, welded portions (31) for firmly fixing the core pieces (10) to each other are provided in the surface of one of the groove portions (13b) formed in the vicinities of the central portion of each magnetic pole (13) in the direction of rotation. Each welded portion (31) is formed continuously in the direction of lamination of the core pieces (10). Each welded portion (31) is formed by welding the surface of the groove portion (13b). By these welded portions (31), the core pieces (10) are firmly fixed to each other in the surface portions of the magnetic pole portions (13).
Abstract:
A gas dynamic pressure bearing apparatus comprises a fixed shaft, a bearing member which is positioned opposite from the fixed shaft and at least a radial gas dynamic pressure bearing portion and a thrust gas dynamic pressure bearing portion which are positioned in a space between the fixed shaft and the bearing member. Dynamic pressure generating means are included for pressurizing gas in the radial gas dynamic pressure bearing portion and the thrust gas dynamic pressure bearing portion such that dynamic pressure action is generated. The bearing member is rotatably supported in relation to the fixed shaft by means of the pressurizing action such that rotational driving is performed by a predetermined motor. The radial gas dynamic pressure bearing portion and the thrust gas dynamic pressure bearing portion are structured such that gas is sealed from the space around the motor by a space sealing means and that gas flows from one side to other. The flowing gas is circulated between the radial gas dynamic pressure bearing portion and the thrust gas dynamic pressure bearing portion through a gas circulation path. A gas passage is formed on the fixed shaft such that the gas circulation path is connected to the outer end of the fixed shaft. Dust collecting means is formed in one of the gas circulation and the gas passage.
Abstract:
A structure of an armature of a radial rib winding type rotating electric machine which constitutes at least a member of a stator or a rotor is disclosed. The structure comprises a laminated core having an annular core portion, a radial rib-like core portion that extends radially from the annular core portion toward an opposing member and a facing core portion that is formed at the edge of the radial rib-like core portion to face the opposing member. A coil is wound about the radial rib-like core portion of the laminated core. A partial laminating core is laminated on at least the facing core portion of the armature to enlarge the facing surface thereof opposite the opposing member. The total lamination thickness of the facing core portion and partial laminating core portion is larger than the thickness of the radial rib-like core portion.
Abstract:
A stator core for a motor includes a plurality of laminations in a stacked formation one on another defining a generally circular inner periphery for receipt of a motor rotor. Each lamination defines an axis therethrough that is collinear with an axis of each lamination in the stacked formation. Each lamination is rotated about its axis relative to adjacent laminations a predetermined index angle. The laminations have first and second surfaces and are configured such that the core defines at least one inner lamination having laminations adjacent to both the first and second sides and outer laminations having laminations adjacent to one of the first and second sides. Each lamination has a predetermined number of circumferentially equally spaced slots extending radially inwardly from an inner edge of the lamination. The slots define conductor receiving regions therein. Each inner lamination includes at least one interlocking pair including a projection formed in one of the first and second surfaces at a predetermined radial distance from the axis. The projection extends generally transverse from a plane of the lamination. Each interlocking pair further defines a shadow formed therein that is at the same predetermined radial distance from the axis as is the projection. The shadow is spaced from the projection by an angle, .alpha., wherein each projection of a lamination is configured to reside within a shadow of a respective adjacent lamination when the laminations are in their stacked formation.