Abstract:
Systems and methods are disclosed to address inter-cell interference in a heterogeneous network. In one embodiment, a system is disclosed, comprising: a coordinating node situated between a radio access network and a core network; and a first base station in the radio access network in communication with the coordinating node, wherein: the coordinating node has a coordinating scheduler with a first scheduling period; the first base station has a first base station scheduler with a second scheduling period shorter than the first scheduling period; the coordinating scheduler is configured to send a resource reservation list and a resource restriction list to the first base station scheduler once during each first scheduling period; and the first base station is configured to receive the resource reservation list and the resource restriction list and to use the resource reservation list and the resource restriction list when performing mobile device resource scheduling.
Abstract:
A system is disclosed, comprising: a wireless fronthaul access point mounted on a radio mast and configured to receive digital I and Q signaling information from a remote baseband unit for a plurality of radios, the wireless fronthaul access point further comprising a first millimeter wave wireless interface; and an antenna-integrated radio for providing access to user equipments (UEs), mounted within line of sight on the radio mast with the wireless fronthaul access point, the antenna-integrated radio further comprising: a second millimeter wave wireless interface configured to receive the digital I and Q signaling information from the baseband unit via the wireless fronthaul access point, wherein the wireless fronthaul access point thereby wirelessly couples the remote baseband unit and the antenna-integrated radio.
Abstract:
Systems and methods are disclosed for a local evolved packet core (EPC) that interoperates with an eNodeB and a remote EPC. In one embodiment, a method for establishing an ad hoc local network may be disclosed, comprising: monitoring an availability of a connection to a remote core network; creating a first data connection between a first mobile device and a local core network module, thereby permitting a first mobile device to attach to a local network base station without connectivity to the remote core network; identifying, at a local core network module, reconnection to the remote core network; sending, from the local core network module to the remote core network, a service request message based on a prior message received from the first mobile device at the local core network module; creating a second data connection between the local network base station and the remote core network; and forwarding downlink data, received from the remote core network via at the second data connection, to the first mobile device via the first data connection.
Abstract:
A centrally controlled dynamic frequency selection (DFS) mechanism is defined that uses a historical analytical database to define DFS hop patterns, which allows for a better probability of picking a non-interfering channel but also meets the performance requirements of the mesh and satisfying the timing constraints of DFS. A method for performing dynamic frequency selection (DFS) is disclosed, comprising: receiving, at a gateway, measurement reports from a radio access node regarding observed utilization of a 5 GHz radio frequency band shared with a plurality of radio access nodes; determining, based on the received measurement reports, a frequency hop pattern at the gateway; and sending the frequency hop pattern from the gateway to each of the plurality of radio access nodes, thereby enabling compliance with DFS regulations using a centralized gateway.
Abstract:
Systems and methods are disclosed for assigning a quality of service to a data packet in a communications network by mapping a Wi-Fi access layer identifier such as an SSID to a value in a datagram header, and subsequently using the datagram header to assign an appropriate data bearer for the datagram, the data bearer having a quality of service class identifier appropriate for the type of traffic expected to be sent over the particular Wi-Fi access layer.
Abstract:
A method may be disclosed in accordance with some embodiments, comprising: receiving, at a virtualizing gateway between the eNodeB and a first core network, a service request from a first user equipment (UE) via an eNodeB; applying a filter to an identifier of the UE to authenticate the UE; and forwarding, based on the applied filter, the service request from the first UE to the first core network. The identifier may be an international mobile subscriber identity (IMSI). The filter may be a whitelist containing a plurality of IMSIs to be granted service or a blacklist containing a plurality of IMSIs to be denied service, the service request may be a Long Term Evolution (LTE) attach request, and the method may further comprise forwarding the message from the first UE to a first mobility management entity (MME) in the first core network.
Abstract:
Systems and methods are disclosed for enabling a mesh network node to switch from a base station role to a user equipment role relative to a second mesh network node, and vice versa. By switching roles in this manner, the mesh network node may be able to benefit from increased uplink or downlink speed in the new role. This role reversal technique is particularly useful when using wireless protocols such as LTE that are asymmetric and allow differing throughput on uplink and downlink connections. Methods for determining whether to perform role reversal are disclosed, and methods for using role reversal in mesh networks comprising greater than two nodes are also disclosed.
Abstract:
Systems and methods are disclosed for a local evolved packet core (EPC) that interoperates with an eNodeB and a remote EPC. if it is determined that it is possible or likely that the eNodeBs may lose the connection to the remote EPC, or if a connection has been lost, the local EPC may serve as a transparent proxy between the eNodeBs and the remote EPC, identify active sessions and transparently proxy those sessions, destroy or de-allocate unneeded sessions or bearers, and download and synchronize application data and authentication credentials, such as HSS or AAA data, to provide authentication to mobile devices once offline. The use of the local EPC and/or the remote EPC may be toggled, or switched, preemptively or reactively, based on various network conditions. The remote EPC may be disconnected proactively when the local EPC determines that there is no connectivity.
Abstract:
In this invention we disclose methods for incorporating a security gateway within a wireless mesh network. In one embodiment, the wireless mesh network is a heterogeneous mesh network. In one embodiment, a gateway node, which is part of the wireless mesh network, requests a connection to the core network through a security gateway. The security gateway responds by creating an IPSec tunnel and a GRE tunnel within the IPSec tunnel from itself to the gateway node. Once the gateway node is communicatively coupled to the security gateway via secure tunneling, the gateway node sends a mesh routing protocol to the security gateway.
Abstract:
In this invention, we disclose methods of establishing a cellular network having backhaul flexibility, comprising, establishing, at a first cellular base station, a first connection with a core cellular network; establishing, at the first cellular base station, an inter-base station connection with a second cellular base station for relaying traffic from the first and the second cellular base stations to the core cellular network, the second cellular base station having a second connection with the core cellular network; determining, at the first cellular base station, if the quality of the first connection falls below a threshold parameter; and terminating, at the first cellular base station, the first connection in favor of the second connection if the quality of the first connection falls below the threshold parameter.