Abstract:
Dental retention systems which facilitate the adjustment or removal of an oral appliance, e.g., a crown or bridge, from a reconfigurable abutment assembly are described. The adjustable abutment assembly may be secured to an anchoring implant bored into the bones within the mouth. The abutment assembly has a projecting abutment portion with one or more shape memory alloy compression plates or elements extending along the projecting abutment portion. Each of the plates has a length with one or more straightened portions and with at least one curved or arcuate portion. Energy may be applied to the elements such that the arcuate portion self-flattens to allow for the oral appliance to be placed thereupon while removal of the energy allows the elements to reconfigure into its curved configuration thereby locking the oral appliance to the abutment. Removal of the oral appliance may be effected by reapplication of energy to the elements.
Abstract:
Fastening apparatus includes a fastener (30, 64, 120), including a threaded shaft (34, 126) having a thread diameter and a fastening element (36, 68, 124) having a head diameter, greater than the thread diameter. An annular washer (38, 40, 66, 70, 90, 100, 110, 122), including a shape memory material, is configured to fit over and surround the shaft and has an outer diameter no greater than the head diameter.
Abstract:
A method for manufacturing a dental prosthesis is disclosed. The method includes a first step of photographing a patient's mouth with a dental cone beam CT, a second step of converting CT data photographed at the first step into a CAD file, a third step of designing a shape of the dental prosthesis with the CAD file using CAD software, a fourth step of correcting the shape of the designed prosthesis using occlusion simulation software, a fifth step of converting the shape of the prosthesis which is designed finally into manufacturing data, and a sixth step of transmitting the manufacturing data to a dental prosthesis manufacturing machine, thus manufacturing the dental prosthesis.
Abstract:
The apical third of a root canal is cleaned and/or shaped during a root canal procedure with an endodontic file made from a titanium-based alloy either by reciprocating manual use or by using a reciprocating powered hand piece. The titanium-based endodontic file has super-elastic properties that allow it to be very flexible and strong. The endodontic file is rotated in the apex of a root canal in degrees of rotation less than 120 degrees. By restricting the degree of rotation, excessive cutting by the endodontic file is kept to a minimum. The use of elastic alloys of titanium help prevent ledging or other damage to the root canal wall that may be caused using rigid apical files made of stainless steel.
Abstract:
An implantable dental device comprising polymeric shape memory material for implantation into a cavity within alveolar bone of the jaw or within the root canal space of a tooth.
Abstract:
Articles made of shape memory alloys having improved fatigue performance and to methods of treating articles formed from shape memory alloy materials by pre-straining the articles (or desired portions of the articles) in a controlled manner so that the resultant articles exhibit improved fatigue performance. The shape memory articles are preferably medical devices, more preferably implantable medical devices. They are most preferably devices of nitinol shape memory alloy, most particularly that is superelastic at normal body temperature. The pre-straining method of the present invention as performed on such articles includes the controlled introduction of non-recoverable tensile strains greater than about 0.20% at the surface of a desired portion of a shape memory alloy article. Controlled pre-straining operations are performed on the shape-set nitinol metal to achieve non-recoverable tensile strain greater than about 0.20% at or near the surface of selected regions in the nitinol metal article. The pre-straining operations result in a significant increase in fatigue life of the selectively treated regions and an overall improvement in the fatigue performance of the device.
Abstract:
Articles made of shape memory alloys having improved fatigue performance and to methods of treating articles formed from shape memory alloy materials by pre-straining the articles (or desired portions of the articles) in a controlled manner so that the resultant articles exhibit improved fatigue performance. The shape memory articles are preferably medical devices, more preferably implantable medical devices. They are most preferably devices of nitinol shape memory alloy, most particularly that is superelastic at normal body temperature. The pre-straining method of the present invention as performed on such articles includes the controlled introduction of non-recoverable tensile strains greater than about 0.20% at the surface of a desired portion of a shape memory alloy article. Controlled pre-straining operations are performed on the shape-set nitinol metal to achieve nonrecoverable tensile strain greater than about 0.20% at or near the surface of selected regions in the nitinol metal article. The pre-straining operations result in a significant increase in fatigue life of the selectively treated regions and an overall improvement in the fatigue performance of the device.
Abstract:
Self-ligating orthodontic brackets with archwire retainers formed of materials exhibiting shape memory. Each bracket which includes a base from which extends two spaced and opposing pairs of tie wings each pair of which define an archwire guide slot therebetween. The retainers include at least one flange to retain an archwire within the archwire guide slot but which is yieldable to permit insertion and/or removal of the archwire relative to the archwire guide slots. Portions of the brackets and/or retainer may be coated to reduce friction between the archwire and the bracket and to promote aesthetics and overall bracket appearance.
Abstract:
A medical apparatus is constructed to have a proximal end and a distal end, with the distal end including a source of mechanical tissue disruption that is configured to treat or ablate a target surface. The source of mechanical tissue disruption includes a tissue-disrupting distal end, and the medical apparatus further includes a flavored particle output for directing flavored particles in a direction toward the tissue-disrupting distal end. Another feature of the present invention includes a medical apparatus having a proximal end and a distal end. The distal end of the medical apparatus includes a source of tissue displacement that is configured to move or displace a portion of the target surface, and that is formed to have a tissue-displacing distal end. The medical apparatus can be configured to have a flavored particle output for directing flavored particles in a direction toward the tissue-displacing distal end.
Abstract:
A ceramic orthodontic bracket has a centrally located clip for retaining an archwire in an archwire slot. The body of the bracket includes a mesial section, a distal section, and a bridge section, wherein the bridge section extends through, and retains, the clip. The bridge section also includes a recess adjacent to the bridge section that facilitates debonding of the bracket from a patient's tooth. Preferably there are gaps on one or both sides of the clip to allow space for debonding of the bracket by applying a mesial-distal compressive force on the bracket and fracturing the bracket along the recess. This configuration allows the overall mesial-distal width of the bracket to be reduced, thereby facilitating the bonding of brackets to narrow and/or maloccluded teeth. Another embodiment includes a stop member that is connected to the base of the bracket and retains the clip on the bridge section.