Abstract:
A method for controlling an auto macro function of a lens module is provided. Firstly, a control switching module is provided. The both terminals of the coil of the lens module are connected to a power source and the control switching module, respectively. In response to a first signal state of a control signal, a constant current is transmitted from the power source to the coil. The magnets attached on the magnet yoke provide a permanent magnetic field, and the constant current passing through the coil causes a magnetic force to be generated on the coil while moving the lens holder toward the magnet yoke by a constant distance. In response to a second signal state of the control signal, the power source stops transmitting the constant current to the coil, wherein a restoring force generated by the deformed spring causes the lens holder to return to its original position.
Abstract:
A numerical display architecture includes a circuit board substrate, a light emitting element, and a reflector. The circuit board substrate includes a first surface and a second surface opposite to the first surface, and has at least one hole. The light emitting element is reversely mounted on the second surface, and a luminary source of the light emitting element is disposed in the hole through a first opening of the hole. The reflector is disposed on the first surface of the circuit board surface and partly or fully covers a second opening of the hole.
Abstract:
An adaptive power converter controller coupled to a load and a power converter circuit is provided. The adaptive power converter controller has an adaptive voltage sensing unit and a converting control circuit. The adaptive voltage sensing unit is coupled to the load and output a voltage sensing signal according to a load current and a load voltage from the load. The converting control circuit is utilized for receiving the voltage sensing signal and comparing the voltage level of the voltage sensing signal with a current sensing signal, which is corresponding solely to the load current, so as to decide whether the power converter circuit is controlled according to the voltage sensing signal or the current sensing signal.
Abstract:
A wafer level LED package structure includes a light-emitting unit, a first conductive unit, a second conductive unit and an insulative unit. The light-emitting unit has a light-emitting body, a positive conductive layer and a negative conductive layer formed on the light-emitting body, and a first insulative layer formed between the positive conductive layer and the negative conductive layer. The first conductive unit has a first positive conductive layer formed on the positive conductive layer and a first negative conductive layer formed on the negative conductive layer. The second conductive unit has a second positive conductive layer formed on the first positive conductive layer and a second negative conductive layer formed on the first negative conductive layer. The insulative unit has a second insulative layer formed on the first insulative layer and disposed between the second positive conductive layer and the second negative conductive layer.
Abstract:
A debug device of embedded systems is provided. The embedded system includes an embedded processor for reading a bootloader from a flash memory through a data flash interface. The debug device includes a memory transmission interface, a dada storage module, a data control module and a display module. The memory transmission interface is configured to couple the data flash interface for receiving data to the data storage module. The data control module determines whether the data stored in the data storage module is data from a data bus or from the data flash interface according to whether a data control signal of the data flash interface has been triggered. The display module displays the data of the data storage module.
Abstract:
A waterproof and heat-dissipating module mounted on an electronic device includes a housing structure, a compartment structure, and a fan. A first ventilation hole, a second ventilation hole, a first drainage holes, and a second drainage holes are formed on the housing structure. The compartment structure is disposed inside the housing structure and for partitioning an inside space of the housing structure off that includes an inhaling chamber, a fan room, an accommodated space, and an exhausting chamber. The fan is disposed inside the fan room so that airflow is guided from the first ventilation hole to the second ventilation hole via the inhaling chamber, the fan room, the accommodated space, and the exhausting chamber so as to dissipate heat from circuit boards disposed inside the accommodated space away.
Abstract:
A sheet ejection mechanism including a sheet ejection roller capable of rotating along a selective direction and having an arc portion and a plane portion, the arc portion and the plane portion forming a D-shape cross-section, and a pinch member configured at a position adjacent to the sheet ejection roller, wherein a recording medium is clamped and conveyed between the pinch member and the arc portion of the sheet ejection roller, and a gap is formed between the plane portion and the pinch member for allowing the recording medium to pass. Also, the present invention provides a duplex sheet feeding system having the sheet ejection mechanism.
Abstract:
Provided are a 3-port orthogonal mode transducer, and a receiver and receiving method using the same. The 3-port orthogonal mode transducer includes: a transmission port having a rectangular shape elongated in a horizontal direction and configured to transmit a Ka-band (30 GHz) vertical polarization signal; a first reception port having a rectangular shape inclined at about +45 degrees at a location being at about +45 degrees with respect to the transmission port and configured to receive a K-band (20 GHz) vertical or horizontal polarization signal phased-delayed about +45 degrees; and a second reception port having a rectangular shape inclined at about −45 degrees at a location being at about −45 degrees with respect to the transmission port and configured to receive a K-band (20 GHz) vertical or horizontal polarization signal phase-delayed about −45 degrees.
Abstract:
A locking device for a truck is disclosed. The locking device is mounted on the door plank of a container door and is fastened in the doorframe in order to lock the container door. The device comprises a first body, a second body, and a lock. The first body includes a pushing element, a pressing element, and a driver unit. The end of the pressing element is pressed against the end of the pushing element. The driver unit is connected with the pressing element and is next to the second holder. The driver unit is electrically connected to the control unit. The second body includes a rotary element. The rotary element is stopped on the pressing element. The lock is disposed next to the first body. The present invention provides an improved locking device for a truck and ensures the safety of cargo when user forgets to lock the container.