Abstract:
Improved medical devices having anti-thrombogenic and anti-adherent surface modifiers for improved medical device performance and patient outcomes are provided. In certain embodiments, the medical devices are at least partially manufactured using an admixture of a base polymer and surface modifying fluoropolymer additives. In certain embodiments, the medical devices are vascular access devices, vascular access accessories, peripheral vascular devices, or components of these devices.
Abstract:
A catheter that comprises a hub, an elongated conduit, and at least one lumen therein. The lumen includes a proximal lumen section, a distal lumen section, and an intermediate lumen section extending between the proximal and distal lumen sections. The cross-sectional dimension of the intermediate lumen section is less than the cross-sectional dimension of the distal lumen section. In one embodiment, the cross-sectional dimension of the intermediate lumen section is less than the cross-sectional dimension of the proximal lumen section. In certain embodiments, the lumen tapers from the distal and/or proximal lumen sections to the intermediate lumen section.
Abstract:
A catheter that comprises a hub, an elongated conduit, and at least one lumen therein. The lumen includes a proximal lumen section, a distal lumen section, and an intermediate lumen section extending between the proximal and distal lumen sections. The cross-sectional dimension of the intermediate lumen section is less than the cross-sectional dimension of the distal lumen section. In one embodiment, the cross-sectional dimension of the intermediate lumen section is less than the cross-sectional dimension of the proximal lumen section. In certain embodiments, the lumen tapers from the dial and/or proximal lumen sections to the intermediate lumen section.
Abstract:
An energy delivery probe for use in tissue ablation and method of use is presented. The energy delivery device has at least a first energy delivery member and a second energy delivery member that have handle members positioned along a longitudinal axis, each handle member having a proximal and distal end. The distal end of the first handle member is releasably coupled to the proximal end of the second handle member and a portion of each member is defined in a coaxially surrounding relationship to each other along the longitudinal axis. The method of using the probe involves identifying a tissue to be ablated, providing the energy delivery probe, inserting at least a portion of the energy delivery probe into the identified tissue, delivering electrical energy through the energy delivery probe to the identified tissue, and ablating the identified tissue such that at least a first ablation zone is formed.
Abstract:
High flow rate catheters, and related methods, are useful in dialysis and other procedures. A catheter according to the invention comprises a hub and a generally elongated conduit. The conduit has a substantially continuous and smooth wall. The conduit also defines at least one lumen and has a length extending from a proximal end to a distal end of the conduit. The proximal end is coupled to a hub and the distal end has an opening in communication with the lumen. The conduit has a conical shape which tapers along the length.
Abstract:
A bi-directional, pressure-actuated medical valve assembly for improved control of fluids and related methods of use are described. The pressure-actuated, bi-directional valve includes a first flow control portion permitting fluid to flow in a first direction when subjected to a first pressure threshold and a second control flow portion for permitting fluid to flow in a second direction when subjected to a second pressure threshold. Other embodiments are described and claimed.
Abstract:
A device and method for treating a hollow anatomical structure using matter in a plasma state. Device includes a tubular delivery device comprising a tubular body, a hub, and a distal end, wherein the tubular body device having a longitudinal fluid delivery channel and an exit port near the distal end. Device also contains a container having pre-plasma matter being operatively coupled to the hub, at least one energy-emitting element operatively coupled near the distal end of the tubular delivery device. The energy-emitting element is operatively connected to energy source.
Abstract:
An implantable access port for use in transferring fluid transdermally between an external fluid storage or dispensing device and a site within a patient is disclosed. The access port includes a body, at least two reservoirs defined within the access port body, and at least one septum secured to the body and enclosing the reservoirs within the body. The access port also includes reservoir outlets defined within the reservoirs. The access port also has body conduits defined within the body and in fluid communication with the reservoir outlets and external openings defined in the exterior of the body. An implantable access port and system for use in apheresis is also provided that includes an implantable access port, at least one needle, and a catheter that is fluidly connected to the access port.
Abstract:
The method of treating varicose veins and other vascular diseases provides sclerosant fluid through a catheter into the body vessel to be treated. The catheter has a lumen and a plurality of sidewall exits. The sclerosant fluid is provided under sufficient pressure so that it comes out of each exit as a jet of fluid with sufficient velocity to impinge on the vessel wall substantially orthogonal to the wall and thus minimize dilution of the sclerosant fluid and optimize coverage. A movable sheath on the catheter permits selecting a portion of the exits to be uncovered and thus create an infusion zone for the jets of sclerosant fluid which approximately match a desired treatment zone.
Abstract:
A medical system and method for estimating a treatment region for a medical treatment device is provided. The system includes a memory; a processor coupled to the memory; and a treatment control module stored in the memory and executable by the processor. The treatment control module generates an estimated treatment region which is an estimate of a treatment region which would have been derived as a result of a numerical model analysis such as a finite element analysis. Advantageously, the estimated treatment region is generated using a fraction of the time it takes to generate the region using the numerical model analysis.