Abstract:
The invention relates to a method for producing a three-dimensional image dataset of a target volume by using an examination facility having at least two image recording facilities, each featuring a radiation source and a radiation detector, which can be rotated about an axis of rotation which is arranged perpendicular to the connecting line between the radiation source and the radiation detector, comprising: adjusting the recording areas of the image recording facilities such that the recording areas arranged offset in the z-direction supplement each other to form a recording area, which is enlarged in the z-direction; simultaneously recording two-dimensional images in different orientations by means of the image recording facilities rotating about their axis of rotation; reconstructing a three-dimensional sub-image dataset in each instance from the images of the individual image recording facilities; combining the sub-image datasets to form the three-dimensional image dataset.
Abstract:
A method for localizing a medical instrument, in particular a catheter or guide wire, introduced into the body of an examination object, comprising the steps: arrangement of at least four electrodes on the body of the examination object, recording of three-dimensional image data of a body region of the examination object that is of interest by means of an imaging medical examination device, determination of a model of the electrical conductivity of the examination object as a function of the recorded three-dimensional image data, determination of the electric field distribution when a voltage and/or current is/are applied for at least three different electrode pairs formed from the four electrodes as a function of the conductivity model and the spatial positions of the electrodes, not all the electrodes lying in one plane, application of a voltage and/or a current at each electrode pair and determination of a voltage value at an electrode of the medical instrument for the at least three electrode pairs and determination of the spatial position of the medical instrument as the point of intersection of the equipotential surfaces assigned to the at least three voltage values at the electrode of the medical instrument.
Abstract:
An X-ray device (1) is provided including an X-ray source (8) and a first X-ray detector (9,100) for producing a first X-ray image data set of an examination object (P). A second X-ray detector (20) is provided for producing a second X-ray image data set of examination object (P) where the second X-ray detector (20) has a smaller detector surface (23) than the first X-ray detector (9,100). The second X-ray detector (20) may produce an X-ray image associated with the second X-ray image data set that has a higher local resolution than the X-ray image (12) associated with the first X-ray image data set. The second X-ray detector (20) may be movably connected with the first X-ray detector (9,100) so the second X-ray detector (20) maybe articulated upstream of the first X-ray detector (9,100).
Abstract:
With a method for generating an x-ray image sequence for supporting an intervention on a patient with a catheter or guide wire for instance, automatic recognition of the catheter is carried out with recorded x-ray images using a computer system. The x-ray image recording parameters are changed on the basis of the determined quality of the imaging of the object, with the x-ray device preferably being automatically activated with the changed x-ray image recording parameters, to record x-ray images. The doctor can therefore concentrate on the actual intervention and does not have to worry about operating the x-ray device.
Abstract:
The invention relates to a diagnostics device and to a method for the operation thereof comprising an X-ray system for producing X-ray images, the system comprising an X-ray device and an image system for the X-ray device, and a system for locating objects, wherein adjusting means for changing the frequency of at least one of the two systems are provided, by way of which the two systems can be coordinated with one another such that interference within successive X-ray images is virtually static, and the image system comprises a correcting device which is constructed such that the static interference is eliminated. Diagnostics devices of this type are used in various medical procedures, for example in PCI (Percutaneous Coronary Intervention) and Cardiac EP (electrophysiology) interventions.
Abstract:
An x-ray apparatus has a flat panel x-ray detector, the operation of which is susceptible to interference by strong magnetic fields. In order to allow the x-ray system to be operated concurrently with a magnetic system, such as a magnetic tracking system or a magnetic localization system, that emits a magnetic field of sufficient field strength to interfere with the operation of the flat panel x-ray detector, a control unit is provided that operates both the flat panel x-ray detector and the magnetic system. The control unit synchronizes operation of the magnetic system with the operation of the flat panel x-ray detector so that the magnetic system emits the magnetic field only at times that do not interfere with the operation of the flat panel x-ray detector.
Abstract:
An x-ray diagnostic apparatus has an x-ray radiator, a control device connected thereto, a radiation detector and a patient positioning table. A patient weighing device that is connected with the control device to influence parameters for setting the x-ray radiation is associated with the patient positioning table.
Abstract:
The invention relates to a mapping catheter for determination of data of an area of an organ embodied as a flat surface, especially of the heart, to be presented graphically, with at least one thermosensor essentially aligned in the direction of the longitudinal axis of the mapping catheter for determination of temperature-related data which is arranged at a tip of the mapping catheter being provided in the distal area of the mapping catheter for introduction into the organ.
Abstract:
For noise correction in connection with a flat-panel x-ray detector, noise signals of a dark reference area are checked for deviations exceeding a specified threshold which, if any are present, will be taken into consideration separately for calculating the correction factor derived from the noise signal. Image artifacts due, for example, to high-contrast objects such as, for instance, cardiac pacemakers or metallic implants, in the x-ray image will be avoided through this measure.
Abstract:
The present invention relates to a device and a method for synchronizing an image capture device with a first image data set. The image capture device is used for recording a second image data set of a periodically moving area or object. Each first image data set contains information as to the point in time, relative to the periodically moving area or object, when recording took place. The device additionally acquires periodically recurring, current information of the area as well as information concerning the recording instant of the first image data set. From the periodically recurring information and the recording instant of the first image data set, a triggering instant is derived which controls at least one recording of the second image data set by the image capture device in such a way that the second image data set contains image data synchronized to the first image data set.