Abstract:
A method includes applying a coating precursor material over a substrate, the coating precursor material comprising a powder having an average particle diameter in a range of about 10 nanometers to about 10 microns comprising a fluoride eutectic, a metal capable of oxidizing at about 535° C. to about 800° C., one or more materials selected from the group consisting of a metal oxide, a glass, a carbide, and a nitride, and optionally, a precious metal selected from silver, palladium, platinum, gold, rhodium, and alloys thereof, subjecting the coating to a sintering heat treatment, occurring at a first temperature in an inert or reducing atmosphere to sinter the metal of the precursor material, and exposing the coating to an oxidizing heat treatment performed in an oxidizing atmosphere at a second temperature that is less than the first temperature to oxidize a portion of the metal in the coating precursor material.
Abstract:
Sintered silicon nitride products comprising predominantly β-silicon nitride grains in combination with from about 0.1 to 30 mole % silicon carbide, and grain boundary secondary phases of scandium oxide and scandium disilicate. Such products have high fracture toughness, resistance to recession, and resistance to oxidation at temperatures of at least 1500° C. Methods for preparing sintered silicon nitride products are also disclosed.
Abstract:
A layered structure includes a substrate comprising a layer of an oxide/oxide ceramic based composite material, a first oxide layer disposed directly on the substrate and formed from a material that has no greater than about 10% porosity and is substantially impermeable by water vapor, and a second oxide layer disposed directly on the first oxide layer and having a greater porosity than the first oxide layer. Either or both the first and second oxide layers of the coating system may be deposited using a plasma spraying process, a slurry deposition process which is followed by a sintering step, or an EB-PVD process.
Abstract:
A component comprising a silicon-based substrate and a braze-based protective coating disposed on the silicon-based substrate. The braze-based coating comprises a brazed layer, wherein the brazed layer comprises at least one intermetallic compound. A scale layer may be formed on the brazed layer. An environmental barrier coating may be disposed directly on the brazed layer or directly on the scale layer. A thermal barrier coating may be disposed on the environmental barrier coating. Methods for making a Si-based component having a braze-based protective coating are also disclosed.
Abstract:
The complex mechanical gear trains and lubrication systems of conventional engine configurations are eliminated by using combinations of hydrodynamic air foil bearings, hydrodynamic solid geometry carbon seals/bearings, magnetic bearings, and electrical starter/generators that can also act as bearings to support the high speed shafts of gas turbine engines. The various bearing types and the starter/generators are arranged in such a way as to share peak loads experienced by the engine shaft during maximum aircraft maneuvers. This results in a minimal bearing and engine size.
Abstract:
A ceramic finger seal for use between a housing and a combustor liner to inhibit air passage therebetween and for use in fluid sealing between a rotating shaft and a housing circumscribing the rotating shaft. The ceramic finger seal has at least two annular diaphragm members constructed of two or more diaphragm segments bonded end to end by ceramic cement or other high temperature joining compounds. The diaphragm members may be partitioned into a generally continuous inner diameter portion and a segmented outer diameter portion or the reverse thereof. The segmented portion includes finger elements spaced uniformly apart forming gaps therebetween and extend radially outward or inward terminating in a foot portion. The rolled edge on the finger is formed by laser cutting to prevent gouging of the combustor liner surface.
Abstract:
Components, turbochargers, and methods of forming components are provided. In an embodiment, by way of example only, a method of forming a component is provided. The method includes applying a plurality of coated particles to a substrate, wherein each coated particle comprises a solid film lubricant particle and a layer surrounding an entire surface of the solid film lubricant particle, each solid film lubricant particle comprises at least one compound, and the layer comprises a coating material having a greater resistance to oxidation than the compound when subjected to a predetermined processing temperature and heating the substrate to the predetermined processing temperature to form a portion of a coating over the substrate.
Abstract:
A method includes applying a coating precursor material over a substrate, the coating precursor material comprising a powder having an average particle diameter in a range of about 10 nanometers to about 10 microns comprising a fluoride eutectic, a metal capable of oxidizing at about 535° C. to about 800° C., one or more materials selected from the group consisting of a metal oxide, a glass, a carbide, and a nitride, and optionally, a precious metal selected from silver, palladium, platinum, gold, rhodium, and alloys thereof, subjecting the coating to a sintering heat treatment, occurring at a first temperature in an inert or reducing atmosphere to sinter the metal of the precursor material, and exposing the coating to an oxidizing heat treatment performed in an oxidizing atmosphere at a second temperature that is less than the first temperature to oxidize a portion of the metal in the coating precursor material.
Abstract:
A protective coating for a component comprising a ceramic based substrate, and methods for protecting the component, the protective coating adapted for withstanding repeated thermal cycling. The substrate may comprise silicon nitride or silicon carbide, and the protective coating may comprise at least one tantalate of scandium, yttrium, or a rare earth element. The protective coating may further comprise one or more metal oxides. The coating protects the substrate from combustion gases in the high temperature turbine engine environment. The coating may be multi-layered and exhibits strong bonding to Si-based substrate materials and composites.
Abstract:
An auxiliary power unit (APU) includes a compressor, a turbine, a combustor, and a starter-generator unit all integrated within a single containment housing. The turbine has an output shaft on which the compressor is mounted, and the starter-generator unit is coupled to the turbine output shaft without any intervening gears. The rotating components are all rotationally supported within the containment housing using bearings that do not receive a flow of lubricating fluid.