Abstract:
A method of fabricating a semiconductor device includes the following steps. A semiconductor substrate having a first side and a second side facing to the first side is provided. At least an opening is disposed in the semiconductor substrate of a protection region defined in the first side. A first material layer is formed on the first side and the second side, and the first material layer partially fills the opening. Subsequently, a part of the first material layer on the first side and outside the protection region is removed. A second material layer is formed on the first side and the second side, and the second material layer fills the opening. Then, a part of the second material layer on the first side and outside the protection region is removed. Finally, the remaining first material layer and the remaining second material layer on the first side are planarized.
Abstract:
A phase interpolator for a CDR circuit produces an output clock having level transitions between the level transitions on two input clocks. The input clocks drive cross-coupled differential amplifiers with an output that can be varied in phase by variable current throttling or steering, according to an input control value. The differential amplifiers produce an output signal with a transition spanning a time between the start of a transition on the leading input clock up to the end of the transition on the lagging input clock. The output clock is linear so long as the transitions on the two input clocks overlap. Active integrators each having an amplifier with a series resistance and capacitive feedback path are coupled to each input to the cross-coupled differential amplifiers, which enhances overlap of the input clock rise times and improves the linearity of the interpolated output signal.
Abstract:
A level shifter includes an input end being capable of receiving an input voltage signal. The input voltage signal includes a first state transition from a first voltage state to a second voltage state. An output end can output an output voltage signal having a second state transition from a third voltage state to the second voltage state corresponding to the first state transition of the input voltage signal. A driver stage is coupled between the input end and the output end. The driver stage includes a first transistor and a second transistor. Substantially immediately from a time corresponding to about a mean of voltage levels of the first voltage state and the second voltage state, the second voltage state is substantially free from being applied to a gate of the first transistor so as to substantially turn off the first transistor.
Abstract:
An input/output (I/O) circuit includes an electrostatic discharge (ESD) protection circuit electrically coupled with an output node of the I/O circuit. At least one inductor and at least one loading are electrically coupled in a series fashion and between the output node of the I/O circuit and a power line. A circuitry is electrically coupled with a node between the at least one inductor and the at least one loading. The circuitry is operable to increase a current flowing through the at least one inductor during a signal transition.
Abstract:
A bag making machine includes a feeder to unwind and feed a sheet in a first direction, a forming device to bend and fold the sheet to form a tubular body, a speed controller for controlling upstream and downstream speeds of advancement of the tubular body, a cutter to cut the tubular body into a plurality of tubular pieces, a direction changing device to change a direction of advancement of the tubular pieces so that the tubular pieces are advanced in a second direction substantially perpendicular to the first direction, a sewing device to sew and close an open bottom side of each of the tubular pieces, and a sealing device to hot press a sealing tape against the bottom side of each of the tubular pieces.
Abstract:
A clock and data recovery (CDR) circuit includes an inductor-capacitor voltage controlled oscillator (LCVCO) configured to generate a clock signal with a clock frequency. A delay locked loop (DLL) is configured to receive the clock signal from the LCVCO and generate multiple clock phases. A charge pump is configured to control the LCVCO. A phase detector is configured to receive a data input and the multiple clock phases from the DLL, and to control the first charge pump in order to align a data edge of the data input and the multiple clock phases.
Abstract:
When a back cover of a mobile communication device with replaceable cover is replaced, the mobile communication device may perform a corresponding application or enable a special function according to the back cover. The mobile communication device includes a back cover and a body including a processing unit, a storage unit, and a second connection interface. The back cover includes an integrated circuit (IC) element and a first connection interface. The IC element has identification information. The storage unit stores at least an application and a mapping table. The mapping table records the corresponding application of each identification information. When the back cover is assembled to the body, the first connection interface is connected to the second connection interface. The processing unit receives the identification information and looks up the mapping table according the identification information. The processing unit enables the corresponding application according to the mapping table.
Abstract:
A universal dental implant structure includes an implant member and a tooth cap. The implant member has an implant portion, an extended holding portion connecting to the implant portion and a coupling cavity located at one side of the extended holding portion remote from the implant portion. The implant portion is anchored in a cancellous bone and a cortical bone. The extended holding portion is extended outside the cortical bone in a range between 3 mm and 6 mm. The tooth cap has a coupling portion to couple on and fasten to the extended holding portion. The dental implant structure of the invention resolves the problem of occlusion interference in the conventional one-piece type dental implant structure and provides the advantage of withstanding high shearing force thereof, and also has the advantage of flexible assembly in the two-piece type dental implant structure through an abutment.
Abstract:
The present invention provides a capacitor structure, comprising a substrate, a TSV, a dielectric layer and a doped region. The substrate includes a first surface and a second surface, which are disposed oppositely to each other. The TSV penetrates through the first surface and the second surface. The dielectric layer is disposed in the substrate and encompasses the TSV. The doped region is disposed between the dielectric layer and the substrate. The present invention further provides a method of forming the same.