Abstract:
A method of manufacturing an EEPROM device is disclosed. An example method forms a screen oxide film on a semiconductor substrate, forms a first ion implantation mask defining a gate insulating film forming region on the screen oxide film, and performs a first ion implantation on the semiconductor substrate and the first ion implantation mask. The example method also performs a first annealing of the semiconductor substrate, removes the screen oxide film and the first ion implantation mask, and forms a gate oxide film on the semiconductor substrate. In addition, the example method forms a second ion implantation mask defining a gate insulating film forming region on the gate oxide film, performs a second ion implantation on the semiconductor substrate and the second ion implantation mask, performs a second annealing for the semiconductor substrate, removes the second ion implantation mask; and forms a tunnel oxide film on the gate oxide film.
Abstract:
A method for manufacturing a mask ROM of flat cell structure. The method includes the steps of: providing a semiconductor substrate having a flat cell array region and a peripheral circuit region; forming a first and a second mask patterns exposing a substrate portions corresponding to a diffusion layer formation region of the flat cell array region and a device isolation layer of the peripheral circuit region; ion-implanting an impurity in the exposed substrate portions; forming a trench by etching the exposed substrate portion peripheral circuit region; forming a linear oxide layer on the first and the second mask patterns and the surface of the trench, a diffusion layer on the flat cell array region, and a barrier oxide layer on the surface of diffusion layer in accordance with a thermal oxidation process; depositing an oxide layer on the linear oxide layer to fill up the trench; polishing the oxide layer to expose the surface of the first and the second mask patterns; and forming a diffusion layer on the flat cell array region and a trench type isolation layer on the peripheral circuit region by removing the first and the second mask patterns.
Abstract:
There is provided a method for preparing an acrylic copolymer resin for an optical film includes: suspension-polymerizing an acrylic monomer containing a benzene ring, an alkyl(meth)acrylate monomer, and a (meth)acrylic acid monomer to prepare a copolymer; and thermally treating the copolymer at a temperature ranging from 240° C. to 300° C. As the method for preparing an acrylic copolymer of the present invention, a resin having an effectively lowered CTE can be manufactured by inducing the formation of a glutaric anhydride structure by using suspension polymerization that facilitates adjustment of the molecular weight of a resin.
Abstract:
The present invention relates to an optical film and method of manufacturing the same. The optical film of the present invention includes an acrylic resin and a core-shell type graft copolymer wherein the core includes a conjugate diene rubber, and the shell includes an acrylic monomer, an aromatic vinyl monomer, and a maleimide monomer.
Abstract:
Provided are a resin composition including an acryl-based copolymer resin including an alkyl(meth)acrylate-based monomer and an imide-based monomer, additionally copolymerizable with a styrene-based monomer, and a polycarbonate-based resin having a melt index (MI) of 30 g/10 min or more under conditions of a load of 1.2 kg and a temperature of 300° C., a polarizer protective film including the resin composition, and a liquid crystal display including the polarizer protective film. The polarizer protective film according to the present invention has excellent heat resistance, transparency, and optical properties.
Abstract:
Disclosed herein is a variable capacitor and its driving method, the variable capacitor including, a movable first electrode; and a second electrode formed with an insulating film, fixed in place, and its insulating film contacting the first electrode that is moved.
Abstract:
The present invention relates to an acrylic copolymer resin containing: 1) an alklyl (meth)acrylate-based monomer; 2) a (meth)acrylate-based monomer containing an aliphatic ring and/or an aromatic ring; and 3) at least an imide-based monomer or a styrene-based monomer, to a resin composition containing said acrylic copolymer resin and a resin containing an aromatic ring and/or an aliphatic ring in the main chain thereof, to an optical film comprising said resin composition, and to a liquid crystal display device comprising said optical film. The optical film according to the present invention has excellent heat resistance, optical transparency, etc.
Abstract:
The present invention relates to a retardation film that comprises a blend resin of 1) an acryl-based copolymer resin that comprises an alkyl methacrylate-based monomer and a cycloalkyl methacrylate-based monomer, and 2) a resin that comprises an aromatic ring or aliphatic ring in a polymer main chain, a method for manufacturing the retardation film, and a liquid crystal display device that comprises the retardation film. The retardation film according to the present invention has excellent heat resistance, optical transparency, mechanical strength, and durability.
Abstract:
The present invention provides an optical film that includes i) an acryl resin, and ii) 20 to 65 parts by weight of a core-shell type graft copolymer that includes a core having a rubber component and a shell including a polymer having a weight average molecular weight that is the same as or higher than a weight average molecular weight of a polymer constituting the i) acryl resin based on 100 parts by weight of the acryl resin, a retardation film, and an electronic device including the same.
Abstract:
The present invention provides an optical film and a retardation film that each include an acryl resin, and 20 to 65 parts by weight of a graft copolymer including a conjugated diene rubber based on 100 parts by weight of the acryl resin, and an electronic device including the same.