Abstract:
A hydrogen reforming system includes a cyclical compression chamber having an entry port for receiving hydrogen-containing gas and an exit port for delivering reformed hydrogen-containing gas, an arrangement for heating the hydrogen-containing gas to a non-combustible temperature, and a drive system for cycling the cyclical compression chamber. The cyclical compression chamber has an operational cycle with an internal pressure and temperature absent combustion effective for reforming the hydrogen-containing gas.
Abstract:
A fan assembly for an electrical device which comprises a number of heat generating electrical components mounted in an enclosure that includes a front wall, a rear wall and two generally parallel sidewalls. The fan assembly comprises a plurality of fans which are arranged in a row that extends generally perpendicularly between the sidewalls. Each fan comprises an axis of rotation which is oriented at an angle relative to the sidewalls, and the fan assembly further includes a plurality of inlet plenums which each communicate with an inlet end of a corresponding fan and a plurality of exhaust plenums which each communicate with an outlet end of a corresponding fan. In operation, the fans generate an airflow which is distributed through the enclosure by the inlet and exhaust plenums to thereby cool the electrical components.
Abstract:
A cooling fan includes an impeller which comprises a plurality of radially extending blades, each of which includes a blade hub, a blade tip and a blade midspan approximately midway between the hub and the tip. In addition, each blade includes a camber of between about 60° and 90° at the blade hub, between about 15° and 40° at the blade midspan and between about 15° and 40° at the blade tip.
Abstract:
Apparatus, systems, and methods provide for the management of a high temperature electrolysis process. According to embodiments described herein, a fuel cell electrolyzer stack is utilized in an electrolysis process. One implementation includes the use of a solid oxide electrolyzer. Input voltage is cycled around a thermal neutral voltage such that the fuel cell electrolyzer stack cycles between operation in an exothermic mode and an endothermic mode. The waste heat generated by operation in the exothermic mode is used to support the endothermic operation. By cycling between operation modes, the temperature of the fuel cell electrolyzer stack may be controlled without the use of a cooling loop or recirculated reactant flow, and the efficiency of the electrolysis process is maximized.
Abstract:
Disclosed herein are a system and a method for the production of hydrogen. The system advantageously combines an independent high temperature heat source with a solid oxide electrolyzer cell and a heat exchanger located between the cathode inlet and the cathode outlet. The heat exchanger is used to extract heat from the molecular components such as hydrogen derived from the electrolysis. A portion of the hydrogen generated in the solid oxide electrolyzer cell is recombined with steam and recycled to the solid oxide electrolyzer cell. The oxygen generated on the anode side is swept with compressed air and used to drive a gas turbine that is in operative communication with a generator. Electricity generated by the generator is used to drive the electrolysis in the solid oxide electrolyzer cell.
Abstract:
Disclosed is a system for cooling an electronics package. The system includes a fluid pump and a microcooler assembly. The system utilizes one or more cooling layers interspersed with layers of electronics in the electronics package. Each cooling layer has an array of cooling channels formed in a substrate, an input manifold through which cooling fluid is provided for distribution through the array of cooling channels, and an output manifold which collects fluid from the array of cooling channels. The elements of the cooling system are integrated by conduits including a package conduit for passage of fluid from the fluid pump to the electronics package, a cooler conduit for passage of fluid from the electronics package to the microcooler assembly, and a pump conduit for passage of fluid from the microcooler assembly to the fluid pump. Also disclosed is a method for cooling the electronics package.
Abstract:
An air mover, such as a cooling fan, comprises a motor and an impeller which is driven by the motor to generate a flow of air through a flowpath. The motor comprises at least one inlet opening and at least one outlet opening, each of which is in fluid communication with the flowpath. In operation of the air mover, a pressure difference between the inlet and outlet openings causes a portion of the flow of air to flow into the inlet opening, through the motor and out the outlet opening to thereby cool the motor.
Abstract:
A system and method for producing electricity is described. The system comprises a fuel cell assembly. The system may comprise a steam turbine and a generator. The fuel cell assembly may be used to provide heat to produce the steam used to power the steam turbine. The system may comprise a gasifier that is operable to produce a fuel for use in the fuel cell assembly. The system may comprise an air separation unit that is operable to supply oxygen to the gasifier and to the fuel cell assembly for reaction with the fuel. The oxygen that is not reacted in the fuel cell assembly may be recirculated through the fuel cell assembly. Spent fuel from the fuel cell assembly may be recirculated through the fuel cell assembly. A carbon dioxide removal system may be used to remove carbon dioxide from the fuel upstream of the fuel cell.
Abstract:
Systems and methods provide for the thermal management of a high temperature fuel cell. According to embodiments described herein, a non-reactant coolant is routed into a fuel cell from a compressor or a ram air source. The non-reactant coolant absorbs waste heat from the electrochemical reaction within the fuel cell. The heated coolant is discharged from the fuel cell and is vented to the surrounding environment or directed through a turbine. The energy recouped from the heated coolant by the turbine may be used to drive the compressor or a generator to create additional electricity and increase the efficiency of the fuel cell system. A portion of the heated coolant may be recycled into the non-reactant coolant entering the fuel cell to prevent thermal shock of the fuel cell.
Abstract:
Disclosed herein are a system and a method for the production of hydrogen. The system advantageously combines an independent high temperature heat source with a solid oxide electrolyzer cell and a heat exchanger located between the cathode inlet and the cathode outlet. The heat exchanger is used to extract heat from the molecular components such as hydrogen derived from the electrolysis. A portion of the hydrogen generated in the solid oxide electrolyzer cell is recombined with steam and recycled to the solid oxide electrolyzer cell. The oxygen generated on the anode side is swept with compressed air and used to drive a gas turbine that is in operative communication with a generator. Electricity generated by the generator is used to drive the electrolysis in the solid oxide electrolyzer cell.