Abstract:
A flexible actuator comprises a thin film and at least one first enclosure with at least one first bendable element coupled to the first enclosure. The thin film may comprise a conductive layer and a first electret layer over a first surface of the conductive layer. The thin film is configured to be bendable. The first enclosure have a first electrode layer as part of the first enclosure. The first enclosure is provided over the first electret layer with the first electrode layer being spaced apart from the first electret layer. The first electrode layer is coupled with a first terminal of an audio signal input. The thin film is configured to interact with the first enclosure in response to audio signals supplied by the audio signal input and to generate sound waves.
Abstract:
An optical waveguide SPR sensor is adapted for differential measurement. The optical waveguide SPR sensor includes a base, a bottom layer, and at least one set of optical waveguide layers. The set of the optical waveguide layers includes a measuring optical waveguide channel and a reference optical waveguide channel. The measuring optical waveguide channel includes an SPR sensing film layer. The measuring optical waveguide channel and the reference optical waveguide channel are independently configured and substantially parallel one to another. The bottom layer has a refractive index higher than a refractive index of the optical waveguide layer.
Abstract:
A speaker comprises at least one electrode electrically coupled with an audio signal input and a film comprising at least one electret layer. The film is configured to interact with the electrode in response to an audio signal supplied by the audio signal input and to vibrate to generate sound waves. The electret layer is formed from a polymer-containing solution.
Abstract:
The present invention relates to a dual-band micro-planar inverted F antenna (MPIFA), which is made based on a new type of printed circuit board (PCB), and its identification method to all different biomolecular concentration. This device works under 3 GHz and 7 GHz microwave frequency bands, and can predict the relationship for different absorbed biomolecular concentrations versus frequencies with the impedance value, dB(S(1,1)) parameter, and the variance of phase versus the frequency obtained from the measurement.
Abstract:
A method for fabricating organic thin-film transistors is disclosed. The method includes the steps of: providing a mold and a flexible substrate, wherein the mold comprises microstructures for defining source/drain electrode patterns on the substrate and at least an opening for feeding a solution material; forming an adhesive layer on the flexible substrate such that the mold is attached to the flexible substrate via the adhesive layer; feeding a solution material for forming source/drain electrodes via the opening of the mold and curing the solution material so as to form source/drain electrodes; removing the mold and forming a semiconductor layer on the source/drain electrodes; forming an insulator layer on the semiconductor layer and on the source/drain electrodes; forming a gate electrode on the insulator layer; and forming a protective layer for covering the organic thin-film transistor. The channel length of the thin film transistor is determined by the resolution of the microstructures of the mold.
Abstract:
A motion sensing system utilizing piezoelectric laminates with predetermined surface electrode patterns disposed thereon utilizes a frequency selector to pass motion waves of predetermined frequencies and an electrical circuit for processing the electrical signals for transmission to an activating device for appropriate activation. In particular, the frequency selector is a low frequency bandpass filter for free-fall acceleration wave frequencies. By directing appropriate action, the present invention increases the applicability of the device upon which it is mounted (e.g., for military or other hostile environment use), decreases the possibility of damage, and lengthens its useful life.
Abstract:
An apparatus for quantitatively determining an analyte in a sample fluid includes a holder for holding an electrochemical cell that includes a catalyst, a waveform generator for generating a potential profile having a voltage bias and an alternating part, a detector for detecting a current signal for a period of measuring time through the electrochemical cell, a memory for storing the current signal, and a processor for correlating the current signals with the concentration of the analyte.
Abstract:
A diffraction laser encoder apparatus for positional and movement information measurement of a target made with a diffraction grating. The diffraction laser encoder has a laser light source for generating a source beam. A polarization beam splitter assembly comprises a polarization beam splitter for receiving the source beam for splitting a P-polarization component and an S-polarization component of the source beam into parallel and offset beams. A focusing lens focuses the P-polarization component and the S-polarization component beams onto the target diffraction grating and returning diffracted P-polarization and diffracted S-polarization beams back into the polarization beam splitter for generating a detector beam coaxially containing the diffracted P-polarization and the diffracted S-polarization beams. A detector assembly receives the detector beam for electrical processing and analysis for resolving the positional and movement information. In the process, phase information contained in the diffraction signal returned by the target is analyzed.
Abstract:
The invention advantageously provides an alert system and method for geographic or natural disasters that utilize a telecommunications network for monitoring geographic data in disaster-prone areas and accordingly issuing warnings against potential disasters to people inside the monitored area. An alert system according to a preferred embodiment of the invention comprises a telecommunications service network, one or more wireless sensor modules and a control center. The telecommunications network according to this particular embodiment includes service coverage over the monitored areas. The wireless sensor modules are installed to selected locations inside monitored areas. Each of the sensor modules further comprises at least one sensor for collecting geographic or geodetic data and a wireless communications unit for sending collected geographic data to the control center via the telecommunications network. The control center then receives and processes the monitored geographic or geodetic data sent by the wireless sensor modules for further algorithmic analysis. The control center accordingly issues alerts for imminent geographic or natural disasters if the processing of the geographic or geodetic data produces adverse results.
Abstract:
The present invention is to provide a solution for fabricating a light diffusing sheet-like device capable of emitting light with superior brightness, that is a high brightness diffuser. The high brightness diffuser mainly comprises at least two light diffusing pieces with ridge-shape structure arranged thereon, which can be either convex or concave. The convex ridge-shape structure is consisted of a plurality of large convex ridges and a plurality of small convex ridges, which are associated with a ridgeline existing in between two adjacent ridges where the large ridge and small ridge are interlace-arranged, and the ridges along with the associated ridgelines can be longitudinally extended to the same direction. Likewise, The concave ridge-shape structure is constituted the same way as the convex ridge-shape structure is, but is consisted of concave ridges. The high brightness diffuser is fabricated by stacking up the two light diffusing pieces and enabling an included angle to be formed between the two ridge-extending directions of the two light diffusing pieces. Through the embodiment of the present invention, a high brightness diffuser with reduced thickness capable of emitting light of superior brightness and of wide-angle uniformity can be fabricated, and thus can be applied in a rear projection module.