Abstract:
Embodiments include a device, and a method. In an embodiment, a device includes a processor operable to execute an instruction set, and an execution-optimization circuit. The execution circuit includes an execution circuit for receiving an identification of a first instruction to be fetched from the instruction set for execution by the processor, and for pointing to a second instruction of the instruction set of the processor to be fetched for execution by the processor if indicated by an execution-based optimization profile. The execution-based optimization profile being previously derived by a hardware device utilizing data invisible to software and generated during a runtime execution of at least a portion of the instruction set. The execution-optimization circuit may include at least one of a microengine, a micro-programmed circuit, and/or a hardwired circuit.
Abstract:
Various embodiments of methods and systems for designing and constructing displays from multiple light-modulating elements are disclosed. Display elements having different light-modulating and self-assembling characteristics may be used during display assembly and operation.
Abstract:
According to embodiments, an image bitmap is modified to compensate for non-idealities in actual beam locations delivered by a scanned beam or laser scanner system compared to desired pixel locations. For a non-ideal actual beam location, pixel values for neighboring desired pixel locations may be used to generate a compensated actual pixel value. According to some embodiments, the compensated actual pixel value may be a weighted average of the neighboring desired pixel values. The weighting factors may be determined from the actual beam location compared to the desired respective pixel locations. The system may compensate for various distortions including optical aberrations and scanning distortion.
Abstract:
Various embodiments of methods and systems for improving and enhancing vision are disclosed. Adjustable lenses or optical systems may be used to provide adaptive vision modification. In some embodiments, vision modification may be responsive to the current state of the user's visual system. Certain embodiments provide correction of the subject's near and far vision. Other embodiments provide enhancement of vision beyond the physiological ranges of focal length or magnification.
Abstract:
A MEM s scanning device has a variable resonant frequency. In one embodiment, the MEMs device includes a torsion arm that supports an oscillatory body. In one embodiment, an array of removable masses are placed on an exposed portion of the oscillatory body and selectively removed to establish the resonant frequency. The material can be removed by laser ablation, etching, or other processing approaches. In another approach, a migratory material is placed on the torsion arm and selectively stimulated to migrate into the torsion arm, thereby changing the mechanical properties of the torsion arm. The changed mechanical properties in turn changes the resonant frequency of the torsion arm. In another approach, symmetrically distributed masses are removed or added in response to a measured resonant frequency to tune the resonant frequency to a desired resonant frequency. A display apparatus includes the scanning device and the scanning device scans about two or more axes, typically in a raster pattern. Various approaches to controlling the frequency responses of the scanning device are described, including active control of MEMs scanners and passive frequency tuning.
Abstract:
Methods, apparatuses, computer program products, devices and systems are described that include accepting one or more blood vessel sleeve dimensions based on blood vessel data from an individual; and making a rapid-prototyped blood vessel sleeve at least partly based on the one or more blood vessel sleeve dimensions.
Abstract:
A method includes obtaining a measurement of a property of a light source, scanning light from the light source onto a surface, such that the light interacts with the surface, detecting light from the surface to create a picture element, and correcting the picture element with the measurement of the property. An apparatus includes a scanned beam display, the scanned beam display is configured to receive a signal and to scan the signal for viewing by a user. The signal is to contain picture element information. The picture element information includes information for a plurality of colors, wherein information for at least one color is corrected to substantially remove a perturbation to the picture element information, such that an image containing the picture element information will be substantially unchanged by the perturbation.