摘要:
An interface device is connected to a host by an I/O bus and provides hardware and processing mechanisms for accelerating data transfers between a network and a storage unit, while controlling the data transfers by the host. The interface device includes hardware circuitry for processing network packet headers, and can use a dedicated fast-path for data transfer between the network and the storage unit, the fast-path set up by the host. The host CPU and protocol stack avoids protocol processing for data transfer over the fast-path, freeing host bus bandwidth, and the data need not cross the I/O bus, freeing I/O bus bandwidth. The storage unit may include RAID or other multiple drive configurations and may be connected to the INIC by a parallel channel such as SCSI or by a serial channel such as Ethernet or Fibre Channel. The interface device contains a file cache that stores data transferred between the network and storage unit, with organization of data in the interface device file cache controlled by a file system on the host. Additional interface devices may be connected to the host via the I/O bus, with each additional interface device having a file cache controlled by the host file system, and providing additional network connections and/or being connected to additional storage units.
摘要:
An intelligent network interface card (INIC) or communication processing device (CPD) works with a host computer for data communication. The device provides a fast-path that avoids protocol processing for most messages, greatly accelerating data transfer and offloading time-intensive processing tasks from the host CPU. The host retains a fallback processing capability for messages that do not fit fast-path criteria, with the device providing assistance such as validation even for slow-path messages, and messages being selected for either fast-path or slow-path processing. A context for a connection is defined that allows the device to move data, free of headers, directly to or from a destination or source in the host. The context can be passed back to the host for message processing by the host. The device contains specialized hardware circuits that are much faster at their specific tasks than a general purpose CPU. A preferred embodiment includes a trio of pipelined processors devoted to transmit, receive and utility processing, providing full duplex communication for four Fast Ethernet nodes.
摘要:
At least one intelligent network interface card (INIC) is coupled to a host computer to offload protocol processing for multiple network connections, reducing the protocol processing of the host. Plural network connections can maintain, via plural INIC ports and a port aggregation switch, an aggregate connection with a network node, increasing bandwidth and reliability for that aggregate connection. Mechanisms are provided for managing this aggregate connection, including determining which port to employ for each individual network connection, and migrating control of an individual network connection from a first INIC to a second INIC.
摘要:
A Network Interface device (NI device) coupled to a host computer receives a multi-packet message from a network (for example, the Internet) and DMAs the data portions of the various packets directly into a destination in application memory on the host computer. The address of the destination is determined by supplying a first part of the first packet to an application program such that the application program returns the address of the destination. The address is supplied by the host computer to the NI device so that the NI device can DMA the data portions of the various packets directly into the destination. In some embodiments the NI device is an expansion card added to the host computer, whereas in other embodiments the NI device is a part of the host computer.
摘要:
A device and method are disclosed for calculating a CRC on a message or block of data that has been divided into portions, by calculating a partial CRC corresponding to each of the portions and then combining the partial CRCs. The device and method are operable for portions that may have different lengths, and which may be received out of order.
摘要:
An intelligent network interface card (INIC) or communication processing device (CPD) works with a host computer for data communication. The device provides a fast-path that avoids protocol processing for most messages, greatly accelerating data transfer and offloading time-intensive processing tasks from the host CPU. The host retains a fallback processing capability for messages that do not fit fast-path criteria, with the device providing assistance such as validation even for slow-path messages, and messages being selected for either fast-path or slow-path processing. A context for a connection is defined that allows the device to move data, free of headers, directly to or from a destination or source in the host. The context can be passed back to the host for message processing by the host. The device contains specialized hardware circuits that are much faster at their specific tasks than a general purpose CPU. A preferred embodiment includes a trio of pipelined processors devoted to transmit, receive and utility processing, providing full duplex communication for four Fast Ethernet nodes.
摘要:
An interface device is connected to a host by an I/O bus and provides hardware and processing mechanisms for accelerating data transfers between a network and a storage unit, while controlling the data transfers by the host. The interface device includes hardware circuitry for processing network packet headers, and can use a dedicated fast-path for data transfer between the network and the storage unit, the fast-path set up by the host. The host CPU and protocol stack avoids protocol processing for data transfer over the fast-path, freeing host bus bandwidth, and the data need not cross the I/O bus, freeing I/O bus bandwidth. Realtime audio and video communication can also be provided when the interface device is coupled by an audio/video interface to appropriate communication devices, such as microphone, a speaker, a camera and/or a display.
摘要:
A Network Interface device (NI device) coupled to a host computer receives a multi-packet message from a network (for example, the Internet) and DMAs the data portions of the various packets directly into a destination in application memory on the host computer. The address of the destination is determined by supplying a first part of the first packet to an application program such that the application program returns the address of the destination. The address is supplied by the host computer to the NI device so that the NI device can DMA the data portions of the various packets directly into the destination. In some embodiments the NI device is an expansion card added to the host computer, whereas in other embodiments the NI device is a part of the host computer.
摘要:
A system for protocol processing in a computer network has an intelligent network interface card (INIC) or communication processing device (CPD) associated with a host computer. The INIC provides a fast-path that avoids protocol processing for most large multi-packet messages, greatly accelerating data communication. The INIC also assists the host for those message packets that are chosen for processing by host software layers. A communication control block for a message is defined that allows DMA controllers of the INIC to move data, free of headers, directly to or from a destination or source in the host. The context is stored in the INIC as a communication control block (CCB) that can be passed back to the host for message processing by the host. The INIC contains specialized hardware circuits that are much faster at their specific tasks than a general purpose CPU. A preferred embodiment includes a trio of pipelined processors with separate processors devoted to transmit, receive and management processing, with full duplex communication for four fast Ethernet nodes.
摘要:
A system for protocol processing in a computer network has an intelligent network interface card (INIC) or communication processing device (CPD) associated with a host computer. The INIC provides a fast-path that avoids protocol processing for most large multipacket messages, greatly accelerating data communication. The INIC also assists the host for those message packets that are chosen for processing by host software layers. A communication control block for a message is defined that allows DMA controllers of the INIC to move data, free of headers, directly to or from a destination or source in the host. The context is stored in the INIC as a communication control block (CCB) that can be passed back to the host for message processing by the host. The INIC contains specialized hardware circuits that are much faster at their specific tasks than a general purpose CPU. A preferred embodiment includes a trio of pipelined processors with separate processors devoted to transmit, receive and management processing, with full duplex communication for four fast Ethernet nodes.